Listing 1 - 2 of 2 |
Sort by
|
Choose an application
These course-tested lectures provide a technical introduction to Supersymmetric Grand Unified Theories (SUSY GUTs), as well as a personal view on the topic by one of the pioneers in the field. While the Standard Model of Particle Physics is incredibly successful in describing the known universe it is, nevertheless, an incomplete theory with many free parameters and open issues. An elegant solution to all of these quandaries is the proposed theory of SUSY GUTs. In a GUT, quarks and leptons are related in a simple way by the unifying symmetry and their electric charges are quantized, further the relative strength of the strong, weak and electromagnetic forces are predicted. SUSY GUTs additionally provide a framework for understanding particle masses and offer candidates for dark matter. Finally, with the extension of SUSY GUTs to string theory, a quantum-mechanically consistent unification of the four known forces (including gravity) is obtained. The book is organized in three sections: the first section contains a brief introduction to the Standard Model, supersymmetry and the Minimal Supersymmetric Standard Model. Then SUSY GUTs in four space-time dimensions are introduced and reviewed. In addition, the cosmological issues concerning SUSY GUTs are discussed. Then the requirements for embedding a 4D SUSY GUT into higher-dimensional theories including gravity (i.e. String Theory) are investigated. Accordingly, section two of the course is devoted to discussing the so-called Orbifold GUTs and how in turn they solve some of the technical problems of 4D SUSY GUTs. Orbifold GUTs introduce a new set of open issues, which are then resolved in the third section in which it is shown how to embed Orbifold GUTs into the E(8) x E(8) Heterotic String in 10 space-time dimensions.
Physics. --- Mathematical physics. --- Quantum field theory. --- String theory. --- Elementary particles (Physics). --- Quantum Field Theories, String Theory. --- Elementary Particles, Quantum Field Theory. --- Mathematical Applications in the Physical Sciences. --- Mathematical Methods in Physics. --- Physical mathematics --- Physics --- Natural philosophy --- Philosophy, Natural --- Elementary particles (Physics) --- High energy physics --- Nuclear particles --- Nucleons --- Models, String --- String theory --- Relativistic quantum field theory --- Mathematics --- Quantum theory. --- Quantum dynamics --- Quantum mechanics --- Quantum physics --- Mechanics --- Thermodynamics --- Grand unified theories (Nuclear physics) --- Physical sciences --- Dynamics --- Nuclear physics --- Nuclear reactions --- Field theory (Physics) --- Quantum theory --- Relativity (Physics)
Choose an application
The Standard Model of particle physics is an amazingly successful theory describing the fundamental particles and forces of nature. This text, written for a two-semester graduate course on the Standard Model, develops a practical understanding of the theoretical concepts it's built upon, to prepare students to enter research. The author takes a historical approach to demonstrate to students the process of discovery which is often overlooked in other textbooks, presenting quantum field theory and symmetries as the necessary tools for describing and understanding the Standard Model. He develops these tools using a basic understanding of quantum mechanics and classical field theory, such as Maxwell's electrodynamics, before discussing the important role that Noether's theorem and conserved charges play in the theory. Worked examples feature throughout the text, while homework exercises are included for the first five parts, with solutions available online for instructors. Inspired by the author's own teaching experience, suggestions for independent research topics have been provided for the second-half of the course, which students can then present to the rest of the class.
Listing 1 - 2 of 2 |
Sort by
|