Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Mathematical analysis --- Automatic theorem proving --- Analyse mathématique --- Théorèmes --- Foundations --- Fondements --- Démonstration automatique
Choose an application
The second edition of the book includes a new chapter on the study of composition operators on the Hardy space and their complete characterization by Gordon and Hedenmalm. The book is devoted to Diophantine approximation, the analytic theory of Dirichlet series and their composition operators, and connections between these two domains which often occur through the Kronecker approximation theorem and the Bohr lift. The book initially discusses Harmonic analysis, including a sharp form of the uncertainty principle, Ergodic theory and Diophantine approximation, basics on continued fractions expansions, and the mixing property of the Gauss map and goes on to present the general theory of Dirichlet series with classes of examples connected to continued fractions, Bohr lift, sharp forms of the Bohnenblust-Hille theorem, Hardy-Dirichlet spaces, composition operators of the Hardy-Dirichlet space, and much more. Proofs throughout the book mix Hilbertian geometry, complex and harmonic analysis, number theory, and ergodic theory, featuring the richness of analytic theory of Dirichlet series. This self-contained book benefits beginners as well as researchers. .
Ergodic theory. Information theory --- Mathematics --- Classical mechanics. Field theory --- Mechanical properties of solids --- patroonherkenning --- wiskunde --- dynamica --- optica --- Mathematics. --- Dynamics. --- Ergodic theory. --- Vibration. --- Dynamical systems. --- Mathematics, general. --- Dynamical Systems and Ergodic Theory. --- Vibration, Dynamical Systems, Control.
Choose an application
Choose an application
This two-volume text provides a complete overview of the theory of Banach spaces, emphasising its interplay with classical and harmonic analysis (particularly Sidon sets) and probability. The authors give a full exposition of all results, as well as numerous exercises and comments to complement the text and aid graduate students in functional analysis. The book will also be an invaluable reference volume for researchers in analysis. Volume 1 covers the basics of Banach space theory, operatory theory in Banach spaces, harmonic analysis and probability. The authors also provide an annex devoted to compact Abelian groups. Volume 2 focuses on applications of the tools presented in the first volume, including Dvoretzky's theorem, spaces without the approximation property, Gaussian processes, and more. Four leading experts also provide surveys outlining major developments in the field since the publication of the original French edition.
Choose an application
This two-volume text provides a complete overview of the theory of Banach spaces, emphasising its interplay with classical and harmonic analysis (particularly Sidon sets) and probability. The authors give a full exposition of all results, as well as numerous exercises and comments to complement the text and aid graduate students in functional analysis. The book will also be an invaluable reference volume for researchers in analysis. Volume 1 covers the basics of Banach space theory, operatory theory in Banach spaces, harmonic analysis and probability. The authors also provide an annex devoted to compact Abelian groups. Volume 2 focuses on applications of the tools presented in the first volume, including Dvoretzky's theorem, spaces without the approximation property, Gaussian processes, and more. In volume 2, four leading experts also provide surveys outlining major developments in the field since the publication of the original French edition.
Choose an application
The striking theorems showcased in this book are among the most profound results of twentieth-century analysis. The authors' original approach combines rigorous mathematical proofs with commentary on the underlying ideas to provide a rich insight into these landmarks in mathematics. Results ranging from the proof of Littlewood's conjecture to the Banach-Tarski paradox have been selected for their mathematical beauty as well as educative value and historical role. Placing each theorem in historical perspective, the authors paint a coherent picture of modern analysis and its development, whilst maintaining mathematical rigour with the provision of complete proofs, alternative proofs, worked examples, and more than 150 exercises and solution hints. This edition extends the original French edition of 2009 with a new chapter on partitions, including the Hardy-Ramanujan theorem, and a significant expansion of the existing chapter on the Corona problem.
Mathematical analysis. --- Banach algebras. --- Harmonic analysis.
Listing 1 - 6 of 6 |
Sort by
|