Listing 1 - 10 of 14 | << page >> |
Sort by
|
Choose an application
"Ce livre présente les notions et définitions de base de la topologie. Dans cette 6e édition, les concepts sont introduits de façon plus progressive pour s'adapter aux besoins des étudiants, des exercices corrigés ont été renouvelés et des conseils méthodologiques d'aide à la résolution des exercices ont été ajoutés. Un nouveau chapitre sur les espaces normés de dimensions finies complète l'ouvrage." [Éditeur]
Topologie --- Topology --- Topologie - Problèmes et exercices
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
This self-contained book will benefit beginners as well as researchers. It is devoted to Diophantine approximation, the analytic theory of Dirichlet series, and some connections between these two domains, which often occur through the Kronecker approximation theorem. Accordingly, the book is divided into seven chapters, the first three of which present tools from commutative harmonic analysis, including a sharp form of the uncertainty principle, ergodic theory and Diophantine approximation to be used in the sequel. A presentation of continued fraction expansions, including the mixing property of the Gauss map, is given. Chapters four and five present the general theory of Dirichlet series, with classes of examples connected to continued fractions, the famous Bohr point of view, and then the use of random Dirichlet series to produce non-trivial extremal examples, including sharp forms of the Bohnenblust-Hille theorem. Chapter six deals with Hardy-Dirichlet spaces, which are new and useful Banach spaces of analytic functions in a half-plane. Finally, chapter seven presents the Bagchi-Voronin universality theorems, for the zeta function, and r-tuples of L functions. The proofs, which mix hilbertian geometry, complex and harmonic analysis, and ergodic theory, are a very good illustration of the material studied earlier.
Mathematics. --- Mathematics, general. --- Diophantine equations --- Numerical solutions. --- Diophantic equations --- Equations, Diophantic --- Equations, Diophantine --- Equations, Indefinite --- Equations, Indeterminate --- Indefinite equations --- Indeterminate equations --- Diophantine analysis --- Math --- Science
Choose an application
The second edition of the book includes a new chapter on the study of composition operators on the Hardy space and their complete characterization by Gordon and Hedenmalm. The book is devoted to Diophantine approximation, the analytic theory of Dirichlet series and their composition operators, and connections between these two domains which often occur through the Kronecker approximation theorem and the Bohr lift. The book initially discusses Harmonic analysis, including a sharp form of the uncertainty principle, Ergodic theory and Diophantine approximation, basics on continued fractions expansions, and the mixing property of the Gauss map and goes on to present the general theory of Dirichlet series with classes of examples connected to continued fractions, Bohr lift, sharp forms of the Bohnenblust–Hille theorem, Hardy–Dirichlet spaces, composition operators of the Hardy–Dirichlet space, and much more. Proofs throughout the book mix Hilbertian geometry, complex and harmonic analysis, number theory, and ergodic theory, featuring the richness of analytic theory of Dirichlet series. This self-contained book benefits beginners as well as researchers. .
Mathematics. --- Dynamics. --- Ergodic theory. --- Vibration. --- Dynamical systems. --- Mathematics, general. --- Dynamical Systems and Ergodic Theory. --- Vibration, Dynamical Systems, Control. --- Dynamical systems --- Kinetics --- Mathematics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics --- Cycles --- Sound --- Ergodic transformations --- Continuous groups --- Mathematical physics --- Measure theory --- Transformations (Mathematics) --- Math --- Science --- Diophantine approximation. --- Approximation, Diophantine --- Approximation theory --- Diophantine analysis
Choose an application
Choose an application
Choose an application
The second edition of the book includes a new chapter on the study of composition operators on the Hardy space and their complete characterization by Gordon and Hedenmalm. The book is devoted to Diophantine approximation, the analytic theory of Dirichlet series and their composition operators, and connections between these two domains which often occur through the Kronecker approximation theorem and the Bohr lift. The book initially discusses Harmonic analysis, including a sharp form of the uncertainty principle, Ergodic theory and Diophantine approximation, basics on continued fractions expansions, and the mixing property of the Gauss map and goes on to present the general theory of Dirichlet series with classes of examples connected to continued fractions, Bohr lift, sharp forms of the Bohnenblust–Hille theorem, Hardy–Dirichlet spaces, composition operators of the Hardy–Dirichlet space, and much more. Proofs throughout the book mix Hilbertian geometry, complex and harmonic analysis, number theory, and ergodic theory, featuring the richness of analytic theory of Dirichlet series. This self-contained book benefits beginners as well as researchers. .
Ergodic theory. Information theory --- Mathematics --- Classical mechanics. Field theory --- Mechanical properties of solids --- patroonherkenning --- wiskunde --- dynamica --- optica
Listing 1 - 10 of 14 | << page >> |
Sort by
|