Narrow your search

Library

KU Leuven (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

AP (1)

FARO (1)

More...

Resource type

book (6)

digital (1)


Language

English (6)


Year
From To Submit

2022 (2)

2021 (4)

Listing 1 - 6 of 6
Sort by

Book
Anticancer Agents
Author:
ISBN: 3036501401 303650141X Year: 2021 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Anticancer Agents : Design, Synthesis and Evaluation
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a printed edition of the Special Issue entitled “Anticancer Agents: Design, Synthesis and Evaluation” that was published in Molecules. Two review articles and thirty research papers are included in the Special Issue. Three second-generation androgen receptor antagonists that have been approved by the U.S. FDA for the treatment of prostate cancer have been reviewed. Identification of mimics of protein partners as protein-protein interaction inhibitors via virtual screening has been summarized and discussed. Anticancer agents targeting various protein targets, including IGF-1R, Src, protein kinase, aromatase, HDAC, PARP, Toll-Like receptor, c-Met, PI3Kdelta, topoisomerase II, p53, and indoleamine 2,3-dioxygenase, have been explored. The analogs of three well-known tubulin-interacting natural products, paclitaxel, zampanolide, and colchicine, have been designed, synthesized, and evaluated. Several anticancer agents representing diverse chemical scaffolds were assessed in different kinds of cancer cell models. The capability of some anticancer agents to overcome the resistance to currently available drugs was also studied. In addition to looking into the in vitro ability of the anticancer agents to inhibit cancer cell proliferation, apoptosis, and cell cycle, in vivo antitumor efficacy in animal models and DFT were also investigated in some papers.

Keywords

Medicine --- benzofurans --- chemical synthesis --- cytotoxic properties --- HeLa --- MOLT-4 --- K562 --- anticancer --- anti-neuroinflammation --- coumarin --- dihydroartemisinin --- flavonoids --- allene --- E-stereoselective --- regioselective --- anti-cancer activity --- cyanopyridone --- substituted pyridine --- pyridotriazine --- pyrazolopyridine --- thioxotriazopyridine --- anticancer activity --- HepG2 --- antitumor activity --- computational docking --- MDM2-p53 interaction --- xanthones --- yeast-based assays --- estrone derivatives --- hydrazine --- N-substituted pyrazoline --- anti-ovarian cancer --- topoisomerase II inhibitor --- kinase inhibitor --- antiproliferative agent --- urea --- synthesis --- antiproliferative activity --- apoptosis --- indoleamine 2,3-dioxygenase --- inhibitor --- anti-tumor --- immune modulation --- tryptophan metabolism --- taxoids --- βIII-tubulin --- P-glycoprotein --- drug resistance --- thiopene --- thienopyrimidinone --- thiazolidinone --- breast cancer --- benzofuran–pyrazole --- nanoparticles --- cytotoxic activity --- PARP-1 inhibition --- 3,6-dibromocarbazole --- 5-bromoindole --- carbazole --- actin --- migration --- Thienopyrimidine --- Pyrazole --- PI3Kα inhibitor --- quinazolin-4(3H)-one --- quinazolin-4(3H)-thione --- Schiff base --- antioxidant activity --- DFT study --- ortho-quinones --- beta-lapachone --- tanshione IIA --- PI3Ks --- PI3Kδ inhibitors --- 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide --- anticancer agents --- protein–protein interactions --- virtual screening --- mimetics --- drug discovery --- bivalency --- polyvalency --- antitumor --- cell cycle --- ovarian cancer --- P-MAPA --- IL-12 --- TLR signaling --- inflammation --- chemoresistance --- 4-(pyridin-4-yloxy)benzamide --- 1,2,3-triazole --- c-Met --- natural product --- anticancer agent --- zampanolide --- Talazoparib --- PARP inhibitor --- prodrug --- o-nitro-benzyl --- photoactivatable protecting groups --- salinomycin --- overcoming drug resistance --- tumor specificity --- synergy --- 5-fluorouracil --- gemcitabine --- amides/esters --- colchicine analogs --- thiocolchicine --- colchiceine --- antimitotic agents --- hydrates --- dihydropyranoindole --- HDAC inhibitors --- neuroblastoma --- aromatase --- MCF-7 --- NIH3T3 --- benzimidazole --- triazolothiadiazine --- docking --- ADME --- organosilicon compounds --- SILA-409 (Alis-409) --- SILA-421 (Alis-421) --- multidrug resistance (MDR) reversal --- ABCB1 (P-glycoprotein) --- colon cancer --- colchicine amide --- colchicine sulfonamide --- tubulin inhibitors --- docking studies --- crystal structure --- PROTACs --- protein degradation --- IGF-1R --- Src --- protein kinase --- phenylpyrazolopyrimidine --- enzyme inhibition --- molecular simulation --- androgen receptor --- prostate cancer --- enzalutamide --- apalutamide --- darolutamide --- triple-negative breast cancer --- cytotoxicity --- chrysin analogues --- flavonoid --- anticancer compounds


Book
Anticancer Agents : Design, Synthesis and Evaluation
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a printed edition of the Special Issue entitled “Anticancer Agents: Design, Synthesis and Evaluation” that was published in Molecules. Two review articles and thirty research papers are included in the Special Issue. Three second-generation androgen receptor antagonists that have been approved by the U.S. FDA for the treatment of prostate cancer have been reviewed. Identification of mimics of protein partners as protein-protein interaction inhibitors via virtual screening has been summarized and discussed. Anticancer agents targeting various protein targets, including IGF-1R, Src, protein kinase, aromatase, HDAC, PARP, Toll-Like receptor, c-Met, PI3Kdelta, topoisomerase II, p53, and indoleamine 2,3-dioxygenase, have been explored. The analogs of three well-known tubulin-interacting natural products, paclitaxel, zampanolide, and colchicine, have been designed, synthesized, and evaluated. Several anticancer agents representing diverse chemical scaffolds were assessed in different kinds of cancer cell models. The capability of some anticancer agents to overcome the resistance to currently available drugs was also studied. In addition to looking into the in vitro ability of the anticancer agents to inhibit cancer cell proliferation, apoptosis, and cell cycle, in vivo antitumor efficacy in animal models and DFT were also investigated in some papers.

Keywords

benzofurans --- chemical synthesis --- cytotoxic properties --- HeLa --- MOLT-4 --- K562 --- anticancer --- anti-neuroinflammation --- coumarin --- dihydroartemisinin --- flavonoids --- allene --- E-stereoselective --- regioselective --- anti-cancer activity --- cyanopyridone --- substituted pyridine --- pyridotriazine --- pyrazolopyridine --- thioxotriazopyridine --- anticancer activity --- HepG2 --- antitumor activity --- computational docking --- MDM2-p53 interaction --- xanthones --- yeast-based assays --- estrone derivatives --- hydrazine --- N-substituted pyrazoline --- anti-ovarian cancer --- topoisomerase II inhibitor --- kinase inhibitor --- antiproliferative agent --- urea --- synthesis --- antiproliferative activity --- apoptosis --- indoleamine 2,3-dioxygenase --- inhibitor --- anti-tumor --- immune modulation --- tryptophan metabolism --- taxoids --- βIII-tubulin --- P-glycoprotein --- drug resistance --- thiopene --- thienopyrimidinone --- thiazolidinone --- breast cancer --- benzofuran–pyrazole --- nanoparticles --- cytotoxic activity --- PARP-1 inhibition --- 3,6-dibromocarbazole --- 5-bromoindole --- carbazole --- actin --- migration --- Thienopyrimidine --- Pyrazole --- PI3Kα inhibitor --- quinazolin-4(3H)-one --- quinazolin-4(3H)-thione --- Schiff base --- antioxidant activity --- DFT study --- ortho-quinones --- beta-lapachone --- tanshione IIA --- PI3Ks --- PI3Kδ inhibitors --- 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide --- anticancer agents --- protein–protein interactions --- virtual screening --- mimetics --- drug discovery --- bivalency --- polyvalency --- antitumor --- cell cycle --- ovarian cancer --- P-MAPA --- IL-12 --- TLR signaling --- inflammation --- chemoresistance --- 4-(pyridin-4-yloxy)benzamide --- 1,2,3-triazole --- c-Met --- natural product --- anticancer agent --- zampanolide --- Talazoparib --- PARP inhibitor --- prodrug --- o-nitro-benzyl --- photoactivatable protecting groups --- salinomycin --- overcoming drug resistance --- tumor specificity --- synergy --- 5-fluorouracil --- gemcitabine --- amides/esters --- colchicine analogs --- thiocolchicine --- colchiceine --- antimitotic agents --- hydrates --- dihydropyranoindole --- HDAC inhibitors --- neuroblastoma --- aromatase --- MCF-7 --- NIH3T3 --- benzimidazole --- triazolothiadiazine --- docking --- ADME --- organosilicon compounds --- SILA-409 (Alis-409) --- SILA-421 (Alis-421) --- multidrug resistance (MDR) reversal --- ABCB1 (P-glycoprotein) --- colon cancer --- colchicine amide --- colchicine sulfonamide --- tubulin inhibitors --- docking studies --- crystal structure --- PROTACs --- protein degradation --- IGF-1R --- Src --- protein kinase --- phenylpyrazolopyrimidine --- enzyme inhibition --- molecular simulation --- androgen receptor --- prostate cancer --- enzalutamide --- apalutamide --- darolutamide --- triple-negative breast cancer --- cytotoxicity --- chrysin analogues --- flavonoid --- anticancer compounds


Book
Anticancer Agents : Design, Synthesis and Evaluation
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a printed edition of the Special Issue entitled “Anticancer Agents: Design, Synthesis and Evaluation” that was published in Molecules. Two review articles and thirty research papers are included in the Special Issue. Three second-generation androgen receptor antagonists that have been approved by the U.S. FDA for the treatment of prostate cancer have been reviewed. Identification of mimics of protein partners as protein-protein interaction inhibitors via virtual screening has been summarized and discussed. Anticancer agents targeting various protein targets, including IGF-1R, Src, protein kinase, aromatase, HDAC, PARP, Toll-Like receptor, c-Met, PI3Kdelta, topoisomerase II, p53, and indoleamine 2,3-dioxygenase, have been explored. The analogs of three well-known tubulin-interacting natural products, paclitaxel, zampanolide, and colchicine, have been designed, synthesized, and evaluated. Several anticancer agents representing diverse chemical scaffolds were assessed in different kinds of cancer cell models. The capability of some anticancer agents to overcome the resistance to currently available drugs was also studied. In addition to looking into the in vitro ability of the anticancer agents to inhibit cancer cell proliferation, apoptosis, and cell cycle, in vivo antitumor efficacy in animal models and DFT were also investigated in some papers.

Keywords

Medicine --- benzofurans --- chemical synthesis --- cytotoxic properties --- HeLa --- MOLT-4 --- K562 --- anticancer --- anti-neuroinflammation --- coumarin --- dihydroartemisinin --- flavonoids --- allene --- E-stereoselective --- regioselective --- anti-cancer activity --- cyanopyridone --- substituted pyridine --- pyridotriazine --- pyrazolopyridine --- thioxotriazopyridine --- anticancer activity --- HepG2 --- antitumor activity --- computational docking --- MDM2-p53 interaction --- xanthones --- yeast-based assays --- estrone derivatives --- hydrazine --- N-substituted pyrazoline --- anti-ovarian cancer --- topoisomerase II inhibitor --- kinase inhibitor --- antiproliferative agent --- urea --- synthesis --- antiproliferative activity --- apoptosis --- indoleamine 2,3-dioxygenase --- inhibitor --- anti-tumor --- immune modulation --- tryptophan metabolism --- taxoids --- βIII-tubulin --- P-glycoprotein --- drug resistance --- thiopene --- thienopyrimidinone --- thiazolidinone --- breast cancer --- benzofuran–pyrazole --- nanoparticles --- cytotoxic activity --- PARP-1 inhibition --- 3,6-dibromocarbazole --- 5-bromoindole --- carbazole --- actin --- migration --- Thienopyrimidine --- Pyrazole --- PI3Kα inhibitor --- quinazolin-4(3H)-one --- quinazolin-4(3H)-thione --- Schiff base --- antioxidant activity --- DFT study --- ortho-quinones --- beta-lapachone --- tanshione IIA --- PI3Ks --- PI3Kδ inhibitors --- 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide --- anticancer agents --- protein–protein interactions --- virtual screening --- mimetics --- drug discovery --- bivalency --- polyvalency --- antitumor --- cell cycle --- ovarian cancer --- P-MAPA --- IL-12 --- TLR signaling --- inflammation --- chemoresistance --- 4-(pyridin-4-yloxy)benzamide --- 1,2,3-triazole --- c-Met --- natural product --- anticancer agent --- zampanolide --- Talazoparib --- PARP inhibitor --- prodrug --- o-nitro-benzyl --- photoactivatable protecting groups --- salinomycin --- overcoming drug resistance --- tumor specificity --- synergy --- 5-fluorouracil --- gemcitabine --- amides/esters --- colchicine analogs --- thiocolchicine --- colchiceine --- antimitotic agents --- hydrates --- dihydropyranoindole --- HDAC inhibitors --- neuroblastoma --- aromatase --- MCF-7 --- NIH3T3 --- benzimidazole --- triazolothiadiazine --- docking --- ADME --- organosilicon compounds --- SILA-409 (Alis-409) --- SILA-421 (Alis-421) --- multidrug resistance (MDR) reversal --- ABCB1 (P-glycoprotein) --- colon cancer --- colchicine amide --- colchicine sulfonamide --- tubulin inhibitors --- docking studies --- crystal structure --- PROTACs --- protein degradation --- IGF-1R --- Src --- protein kinase --- phenylpyrazolopyrimidine --- enzyme inhibition --- molecular simulation --- androgen receptor --- prostate cancer --- enzalutamide --- apalutamide --- darolutamide --- triple-negative breast cancer --- cytotoxicity --- chrysin analogues --- flavonoid --- anticancer compounds


Book
The hand-eye-brain system of intelligent robot : from interdisciplinary perspective of information science and neuroscience
Authors: --- ---
ISBN: 9811635757 9811635749 Year: 2022 Publisher: Singapore : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Multi
The “Hand-eye-brain” System of Intelligent Robot
Authors: --- --- ---
ISBN: 9789811635755 9789811635748 9789811635762 9789811635779 Year: 2022 Publisher: Singapore Springer Nature Singapore :Imprint: Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book reports the new results of intelligent robot with hand-eye-brain, from the interdisciplinary perspective of information science and neuroscience. It collects novel research ideas on attractive region in environment (ARIE), intrinsic variable preserving manifold learning (IVPML) and biologically inspired visual congnition, which are theoretically important but challenging to develop the intelligent robot. Furthermore, the book offers new thoughts on the possible future development of human-inspired robotics, with vivid illustrations. The book is useful for researchers, R&D engineers and graduate students working on intelligent robots.

Listing 1 - 6 of 6
Sort by