Narrow your search

Library

KU Leuven (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

AP (1)

FARO (1)

More...

Resource type

book (4)

digital (1)


Language

English (5)


Year
From To Submit

2021 (3)

2014 (2)

Listing 1 - 5 of 5
Sort by

Book
Thermal management for LED applications
Authors: ---
ISBN: 146145090X 1461450918 Year: 2014 Publisher: New York : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Thermal Management for LED Applications provides state-of-the-art information on recent developments in thermal management as it relates to LEDs and LED-based systems and their applications. Coverage begins with an overview of the basics of thermal management including thermal design for LEDs, thermal characterization and testing of LEDs, and issues related to failure mechanisms and reliability and performance in harsh environments. Advances and recent developments in thermal management round out the book with discussions on advances in TIMs (thermal interface materials) for LED applications, advances in forced convection cooling of LEDs, and advances in heat sinks for LED assemblies. This book also: Presents a comprehensive overview of the basics of thermal management as it relates to LEDs and LED-based systems Discusses both design and thermal management considerations when manufacturing LEDs and LED-based systems Covers reliability and performance of LEDs in harsh environments Has a hands-on applications approach that looks at the importance of thermal management of LEDs in the automotive and aerospace fields Thermal Management for LED Applications is an ideal book for electronic engineers, designers, researchers, and graduate students interested in LEDs and thermal management.  .


Digital
Thermal Management for LED Applications
Authors: ---
ISBN: 9781461450917 Year: 2014 Publisher: New York, NY Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

Thermal Management for LED Applications provides state-of-the-art information on recent developments in thermal management as it relates to LEDs and LED-based systems and their applications. Coverage begins with an overview of the basics of thermal management including thermal design for LEDs, thermal characterization and testing of LEDs, and issues related to failure mechanisms and reliability and performance in harsh environments. Advances and recent developments in thermal management round out the book with discussions on advances in TIMs (thermal interface materials) for LED applications, advances in forced convection cooling of LEDs, and advances in heat sinks for LED assemblies. This book also: Presents a comprehensive overview of the basics of thermal management as it relates to LEDs and LED-based systems Discusses both design and thermal management considerations when manufacturing LEDs and LED-based systems Covers reliability and performance of LEDs in harsh environments Has a hands-on applications approach that looks at the importance of thermal management of LEDs in the automotive and aerospace fields Thermal Management for LED Applications is an ideal book for electronic engineers, designers, researchers, and graduate students interested in LEDs and thermal management.  .


Book
Thermal and Electro-thermal System Simulation 2020
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, edited by Prof. Marta Rencz and Prof Andras Poppe, Budapest University of Technology and Economics, and by Prof. Lorenzo Codecasa, Politecnico di Milano, collects fourteen papers carefully selected for the “thermal and electro-thermal system simulation” Special Issue of Energies. These contributions present the latest results in a currently very “hot” topic in electronics: the thermal and electro-thermal simulation of electronic components and systems. Several papers here proposed have turned out to be extended versions of papers presented at THERMINIC 2019, which was one of the 2019 stages of choice for presenting outstanding contributions on thermal and electro-thermal simulation of electronic systems. The papers proposed to the thermal community in this book deal with modeling and simulation of state-of-the-art applications which are highly critical from the thermal point of view, and around which there is great research activity in both industry and academia. In particular, contributions are proposed on the multi-physics simulation of families of electronic packages, multi-physics advanced modeling in power electronics, multiphysics modeling and simulation of LEDs, batteries and other micro and nano-structures.

Keywords

History of engineering & technology --- lithium-ion battery --- thermal modelling --- electro-thermal model --- heat generation --- experimental validation --- thermal transient testing --- non-destructive testing --- thermal testability --- accuracy repeatability and reproducibility of thermal measurements --- thermal testing standards --- 3D IC --- microchannels --- liquid cooling --- compact thermal model --- thermal simulation --- hotspot --- thermal-aware task scheduling --- DVFS --- statistical analysis --- electronic packages --- detailed thermal model --- Joint Electron Device Engineering Council (JEDEC) metrics --- thermal impedance --- AlGaN-GaN HEMT --- TDTR --- thermal conductivity --- thermal interface resistance --- size effect --- phonon transport mechanisms --- nonlinear thermal model --- SPICE --- pulse transformer --- thermal phenomena --- self-heating --- modelling --- measurements --- BCI-DCTM --- ROM --- modal approach --- BGA --- module temperature --- solar energy --- heat transfer mechanisms --- power LED measurement and simulation --- life testing --- reliability testing --- LM-80 --- TM-21 --- LED lifetime modelling --- LED multi-domain modelling --- Spice-like modelling of LEDs --- lifetime extrapolation and modelling of LEDs --- beyond CMOS --- VO2 --- thermal-electronic circuits --- electro-thermal simulation --- vertical structure --- power LEDs --- thermal pads --- thermal resistance --- optical efficiency --- electronics cooling --- Light-emitting diodes --- CoB LEDs --- multi-domain modeling --- finite volume method --- phosphor modeling --- magnetic nanoparticle --- microfluidics --- CFD --- OpenFOAM --- two-phase solver --- rheology --- LED --- Delphi4LED --- digital twin --- digital luminaire design --- computation time --- Industry 4.0


Book
Thermal and Electro-thermal System Simulation 2020
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, edited by Prof. Marta Rencz and Prof Andras Poppe, Budapest University of Technology and Economics, and by Prof. Lorenzo Codecasa, Politecnico di Milano, collects fourteen papers carefully selected for the “thermal and electro-thermal system simulation” Special Issue of Energies. These contributions present the latest results in a currently very “hot” topic in electronics: the thermal and electro-thermal simulation of electronic components and systems. Several papers here proposed have turned out to be extended versions of papers presented at THERMINIC 2019, which was one of the 2019 stages of choice for presenting outstanding contributions on thermal and electro-thermal simulation of electronic systems. The papers proposed to the thermal community in this book deal with modeling and simulation of state-of-the-art applications which are highly critical from the thermal point of view, and around which there is great research activity in both industry and academia. In particular, contributions are proposed on the multi-physics simulation of families of electronic packages, multi-physics advanced modeling in power electronics, multiphysics modeling and simulation of LEDs, batteries and other micro and nano-structures.

Keywords

lithium-ion battery --- thermal modelling --- electro-thermal model --- heat generation --- experimental validation --- thermal transient testing --- non-destructive testing --- thermal testability --- accuracy repeatability and reproducibility of thermal measurements --- thermal testing standards --- 3D IC --- microchannels --- liquid cooling --- compact thermal model --- thermal simulation --- hotspot --- thermal-aware task scheduling --- DVFS --- statistical analysis --- electronic packages --- detailed thermal model --- Joint Electron Device Engineering Council (JEDEC) metrics --- thermal impedance --- AlGaN-GaN HEMT --- TDTR --- thermal conductivity --- thermal interface resistance --- size effect --- phonon transport mechanisms --- nonlinear thermal model --- SPICE --- pulse transformer --- thermal phenomena --- self-heating --- modelling --- measurements --- BCI-DCTM --- ROM --- modal approach --- BGA --- module temperature --- solar energy --- heat transfer mechanisms --- power LED measurement and simulation --- life testing --- reliability testing --- LM-80 --- TM-21 --- LED lifetime modelling --- LED multi-domain modelling --- Spice-like modelling of LEDs --- lifetime extrapolation and modelling of LEDs --- beyond CMOS --- VO2 --- thermal-electronic circuits --- electro-thermal simulation --- vertical structure --- power LEDs --- thermal pads --- thermal resistance --- optical efficiency --- electronics cooling --- Light-emitting diodes --- CoB LEDs --- multi-domain modeling --- finite volume method --- phosphor modeling --- magnetic nanoparticle --- microfluidics --- CFD --- OpenFOAM --- two-phase solver --- rheology --- LED --- Delphi4LED --- digital twin --- digital luminaire design --- computation time --- Industry 4.0


Book
Thermal and Electro-thermal System Simulation 2020
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, edited by Prof. Marta Rencz and Prof Andras Poppe, Budapest University of Technology and Economics, and by Prof. Lorenzo Codecasa, Politecnico di Milano, collects fourteen papers carefully selected for the “thermal and electro-thermal system simulation” Special Issue of Energies. These contributions present the latest results in a currently very “hot” topic in electronics: the thermal and electro-thermal simulation of electronic components and systems. Several papers here proposed have turned out to be extended versions of papers presented at THERMINIC 2019, which was one of the 2019 stages of choice for presenting outstanding contributions on thermal and electro-thermal simulation of electronic systems. The papers proposed to the thermal community in this book deal with modeling and simulation of state-of-the-art applications which are highly critical from the thermal point of view, and around which there is great research activity in both industry and academia. In particular, contributions are proposed on the multi-physics simulation of families of electronic packages, multi-physics advanced modeling in power electronics, multiphysics modeling and simulation of LEDs, batteries and other micro and nano-structures.

Keywords

History of engineering & technology --- lithium-ion battery --- thermal modelling --- electro-thermal model --- heat generation --- experimental validation --- thermal transient testing --- non-destructive testing --- thermal testability --- accuracy repeatability and reproducibility of thermal measurements --- thermal testing standards --- 3D IC --- microchannels --- liquid cooling --- compact thermal model --- thermal simulation --- hotspot --- thermal-aware task scheduling --- DVFS --- statistical analysis --- electronic packages --- detailed thermal model --- Joint Electron Device Engineering Council (JEDEC) metrics --- thermal impedance --- AlGaN-GaN HEMT --- TDTR --- thermal conductivity --- thermal interface resistance --- size effect --- phonon transport mechanisms --- nonlinear thermal model --- SPICE --- pulse transformer --- thermal phenomena --- self-heating --- modelling --- measurements --- BCI-DCTM --- ROM --- modal approach --- BGA --- module temperature --- solar energy --- heat transfer mechanisms --- power LED measurement and simulation --- life testing --- reliability testing --- LM-80 --- TM-21 --- LED lifetime modelling --- LED multi-domain modelling --- Spice-like modelling of LEDs --- lifetime extrapolation and modelling of LEDs --- beyond CMOS --- VO2 --- thermal-electronic circuits --- electro-thermal simulation --- vertical structure --- power LEDs --- thermal pads --- thermal resistance --- optical efficiency --- electronics cooling --- Light-emitting diodes --- CoB LEDs --- multi-domain modeling --- finite volume method --- phosphor modeling --- magnetic nanoparticle --- microfluidics --- CFD --- OpenFOAM --- two-phase solver --- rheology --- LED --- Delphi4LED --- digital twin --- digital luminaire design --- computation time --- Industry 4.0 --- lithium-ion battery --- thermal modelling --- electro-thermal model --- heat generation --- experimental validation --- thermal transient testing --- non-destructive testing --- thermal testability --- accuracy repeatability and reproducibility of thermal measurements --- thermal testing standards --- 3D IC --- microchannels --- liquid cooling --- compact thermal model --- thermal simulation --- hotspot --- thermal-aware task scheduling --- DVFS --- statistical analysis --- electronic packages --- detailed thermal model --- Joint Electron Device Engineering Council (JEDEC) metrics --- thermal impedance --- AlGaN-GaN HEMT --- TDTR --- thermal conductivity --- thermal interface resistance --- size effect --- phonon transport mechanisms --- nonlinear thermal model --- SPICE --- pulse transformer --- thermal phenomena --- self-heating --- modelling --- measurements --- BCI-DCTM --- ROM --- modal approach --- BGA --- module temperature --- solar energy --- heat transfer mechanisms --- power LED measurement and simulation --- life testing --- reliability testing --- LM-80 --- TM-21 --- LED lifetime modelling --- LED multi-domain modelling --- Spice-like modelling of LEDs --- lifetime extrapolation and modelling of LEDs --- beyond CMOS --- VO2 --- thermal-electronic circuits --- electro-thermal simulation --- vertical structure --- power LEDs --- thermal pads --- thermal resistance --- optical efficiency --- electronics cooling --- Light-emitting diodes --- CoB LEDs --- multi-domain modeling --- finite volume method --- phosphor modeling --- magnetic nanoparticle --- microfluidics --- CFD --- OpenFOAM --- two-phase solver --- rheology --- LED --- Delphi4LED --- digital twin --- digital luminaire design --- computation time --- Industry 4.0

Listing 1 - 5 of 5
Sort by