Listing 1 - 10 of 11 | << page >> |
Sort by
|
Choose an application
This book is the first on the topic and explains the most cutting-edge methods needed for precise calculations and explores the development of powerful algorithms to solve research problems. Multipoint methods have an extensive range of practical applications significant in research areas such as signal processing, analysis of convergence rate, fluid mechanics, solid state physics, and many others. The book takes an introductory approach in making qualitative comparisons of different multipoint methods from various viewpoints to help the reader understand applications of more complex method
Differential equations, Nonlinear --- Numerical solutions. --- Numerical analysis
Choose an application
Mathematics --- Mathematical recreations --- Mathematical recreations. --- Mathematics - Popular works
Choose an application
Numerical solutions of algebraic equations --- 517.58 --- Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials. --- Interval analysis (Mathematics) --- Iterative methods (Mathematics) --- Polynomials. --- Interval analysis (Mathematics). --- Iterative methods (Mathematics). --- 517.58 Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials.
Choose an application
This book sets out to state computationally verifiable initial conditions for predicting the immediate appearance of the guaranteed and fast convergence of iterative root finding methods. Attention is paid to iterative methods for simultaneous determination of polynomial zeros in the spirit of Smale's point estimation theory, introduced in 1986. Some basic concepts and Smale's theory for Newton's method, together with its modifications and higher-order methods, are presented in the first two chapters. The remaining chapters contain the recent author's results on initial conditions guaranteing convergence of a wide class of iterative methods for solving algebraic equations. These conditions are of practical interest since they depend only on available data, the information of a function whose zeros are sought and initial approximations. The convergence approach presented can be applied in designing a package for the simultaneous approximation of polynomial zeros.
Fix-point estimation --- Equations, Roots of --- Mathematical Statistics --- Applied Mathematics --- Mathematics --- Engineering & Applied Sciences --- Physical Sciences & Mathematics --- Fix-point estimation. --- Equations, Roots of. --- Roots of equations --- Point estimation --- Mathematics. --- Numerical analysis. --- Numerical Analysis. --- Mathematical analysis --- Math --- Science --- Estimation theory
Choose an application
Choose an application
This book sets out to state computationally verifiable initial conditions for predicting the immediate appearance of the guaranteed and fast convergence of iterative root finding methods. Attention is paid to iterative methods for simultaneous determination of polynomial zeros in the spirit of Smale's point estimation theory, introduced in 1986. Some basic concepts and Smale's theory for Newton's method, together with its modifications and higher-order methods, are presented in the first two chapters. The remaining chapters contain the recent author's results on initial conditions guaranteing convergence of a wide class of iterative methods for solving algebraic equations. These conditions are of practical interest since they depend only on available data, the information of a function whose zeros are sought and initial approximations. The convergence approach presented can be applied in designing a package for the simultaneous approximation of polynomial zeros.
Choose an application
Programming --- Interval analysis (Mathematics) --- 519.6 --- 681.3 *G10 --- Analysis, Interval --- Arithmetic, Interval --- Interval arithmetic --- Interval mathematics --- Mathematics, Interval --- Mathematics --- Numerical analysis --- Computational mathematics. Numerical analysis. Computer programming --- Computerwetenschap--?*G10 --- 519.6 Computational mathematics. Numerical analysis. Computer programming --- Calcul numerique --- Approximation dans le domaine complexe --- Calcul d'erreur
Choose an application
This book is the first on the topic and explains the most cutting-edge methods needed for precise calculations and explores the development of powerful algorithms to solve research problems. Multipoint methods have an extensive range of practical applications significant in research areas such as signal processing, analysis of convergence rate, fluid mechanics, solid state physics, and many others. The book takes an introductory approach in making qualitative comparisons of different multipoint methods from various viewpoints to help the reader understand applications of more complex methods. Evaluations are made to determine and predict efficiency and accuracy of presented models useful to wide a range of research areas along with many numerical examples for a deep understanding of the usefulness of each method. This book will make it possible for the researchers to tackle difficult problems and deepen their understanding of problem solving using numerical methods. Multipoint methods are of great practical importance, as they determine sequences of successive approximations for evaluative purposes. This is especially helpful in achieving the highest computational efficiency. The rapid development of digital computers and advanced computer arithmetic have provided a need for new methods useful to solving practical problems in a multitude of disciplines such as applied mathematics, computer science, engineering, physics, financial mathematics, and biology. Provides a succinct way of implementing a wide range of useful and important numerical algorithms for solving research problems Illustrates how numerical methods can be used to study problems which have applications in engineering and sciences, including signal processing, and control theory, and financial computation Facilitates a deeper insight into the development of methods, numerical analysis of convergence rate, and very detailed analysis of computational efficiencyProvides a powerful means of learning by systematic experimentation with some of the many fascinating problems in scienceIncludes highly efficient algorithms convenient for the implementation into the most common computer algebra systems such as Mathematica, MatLab, and Maple.
Choose an application
Choose an application
Listing 1 - 10 of 11 | << page >> |
Sort by
|