Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Stochastic processes. --- Trees (Graph theory) --- Processus stochastiques --- Arbres (Théorie des graphes)
Choose an application
Choose an application
Starting around the late 1950s, several research communities began relating the geometry of graphs to stochastic processes on these graphs. This book, twenty years in the making, ties together research in the field, encompassing work on percolation, isoperimetric inequalities, eigenvalues, transition probabilities, and random walks. Written by two leading researchers, the text emphasizes intuition, while giving complete proofs and more than 850 exercises. Many recent developments, in which the authors have played a leading role, are discussed, including percolation on trees and Cayley graphs, uniform spanning forests, the mass-transport technique, and connections on random walks on graphs to embedding in Hilbert space. This state-of-the-art account of probability on networks will be indispensable for graduate students and researchers alike.
Choose an application
This is a mathematically rigorous introduction to fractals which emphasizes examples and fundamental ideas. Building up from basic techniques of geometric measure theory and probability, central topics such as Hausdorff dimension, self-similar sets and Brownian motion are introduced, as are more specialized topics, including Kakeya sets, capacity, percolation on trees and the traveling salesman theorem. The broad range of techniques presented enables key ideas to be highlighted, without the distraction of excessive technicalities. The authors incorporate some novel proofs which are simpler than those available elsewhere. Where possible, chapters are designed to be read independently so the book can be used to teach a variety of courses, with the clear structure offering students an accessible route into the topic.
Fractal analysis --- Geometric analysis --- Probability measures
Choose an application
Choose an application
This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differentiability. Notions of fractal dimension are introduced early and are used throughout the book to describe fine properties of Brownian paths. The relation of Brownian motion and random walk is explored from several viewpoints, including a development of the theory of Brownian local times from random walk embeddings. Stochastic integration is introduced as a tool and an accessible treatment of the potential theory of Brownian motion clears the path for an extensive treatment of intersections of Brownian paths. An investigation of exceptional points on the Brownian path and an appendix on SLE processes, by Oded Schramm and Wendelin Werner, lead directly to recent research themes.
Brownian motion processes. --- Wiener processes --- Brownian movements --- Fluctuations (Physics) --- Markov processes
Choose an application
Part I, Bertoin, J.: Subordinators: Examples and Applications: Foreword.- Elements on subordinators.- Regenerative property.- Asymptotic behaviour of last passage times.- Rates of growth of local time.- Geometric properties of regenerative sets.- Burgers equation with Brownian initial velocity.- Random covering.- Lévy processes.- Occupation times of a linear Brownian motion.- Part II, Martinelli, F.: Lectures on Glauber Dynamics for Discrete Spin Models: Introduction.- Gibbs Measures of Lattice Spin Models.- The Glauber Dynamics.- One Phase Region.- Boundary Phase Transitions.- Phase Coexistence.- Glauber Dynamics for the Dilute Ising Model.- Part III, Peres, Yu.: Probability on Trees: An Introductory Climb: Preface.- Basic Definitions and a Few Highlights.- Galton-Watson Trees.- General percolation on a connected graph.- The first-Moment method.- Quasi-independent Percolation.- The second Moment Method.- Electrical Networks.- Infinite Networks.- The Method of Random Paths.- Transience of Percolation Clusters.- Subperiodic Trees.- The Random Walks RW (lambda) .- Capacity.-.Intersection-Equivalence.- Reconstruction for the Ising Model on a Tree,- Unpredictable Paths in Z and EIT in Z3.- Tree-Indexed Processes.- Recurrence for Tree-Indexed Markov Chains.- Dynamical Pecsolation.- Stochastic Domination Between Trees.
Stochastic processes --- Mathematics. --- Probabilities. --- Statistics. --- Probability Theory and Stochastic Processes. --- Statistical Theory and Methods. --- Mathematical statistics --- Statistique mathématique --- Wiskundige statistiek --- Statistics . --- Statistical analysis --- Statistical data --- Statistical methods --- Statistical science --- Mathematics --- Econometrics --- Probability --- Statistical inference --- Combinations --- Chance --- Least squares --- Risk
Listing 1 - 7 of 7 |
Sort by
|