Listing 1 - 10 of 14 | << page >> |
Sort by
|
Choose an application
Over the past decade, system-on-chip (SoC) designs have evolved to address the ever increasing complexity of applications, fueled by the era of digital convergence. Improvements in process technology have effectively shrunk board-level components so they can be integrated on a single chip. New on-chip communication architectures have been designed to support all inter-component communication in a SoC design. These communication architecture fabrics have a critical impact on the power consumption, performance, cost and design cycle time of modern SoC designs. As application complexity strains
Systems on a chip. --- Microcomputers --- Computer architecture. --- Interconnects (Integrated circuit technology) --- Buses. --- Integrated circuits --- Interconnections (Integrated circuit technology) --- Architecture, Computer --- Buses (Microcomputers) --- Microbuses (Computers) --- Microcomputer buses --- Bus conductors (Electricity) --- Data transmission systems --- SOC design --- Systems on chip --- Embedded computer systems --- Connections
Choose an application
While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve the accuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniques that utilize emerging deep machine learning and statistical techniques to address the challenges for indoor localization and navigation. In particular, the book: Provides comprehensive coverage of the application of machine learning to the domain of indoor localization; Presents techniques to adapt and optimize machine learning models for fast, energy-efficient indoor localization; Covers design and deployment of indoor localization frameworks on mobile, IoT, and embedded devices in real conditions.
Embedded computer systems. --- Cooperating objects (Computer systems). --- Microprocessors. --- Computer architecture. --- Embedded Systems. --- Cyber-Physical Systems. --- Processor Architectures. --- Architecture, Computer --- Minicomputers --- Embedded systems (Computer systems) --- Computer systems --- Architecture Analysis and Design Language
Choose an application
This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits. Discusses efficient implementation of machine learning in embedded, CPS, IoT, and edge computing; Offers comprehensive coverage of hardware design, software design, and hardware/software co-design and co-optimization; Describes real applications to demonstrate how embedded, CPS, IoT, and edge applications benefit from machine learning.
Choose an application
This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits. Discusses efficient implementation of machine learning in embedded, CPS, IoT, and edge computing; Offers comprehensive coverage of hardware design, software design, and hardware/software co-design and co-optimization; Describes real applications todemonstrate how embedded, CPS, IoT, and edge applications benefit from machine learning.
Choose an application
Over the past decade, system-on-chip (SoC) designs have evolved to address the ever increasing complexity of applications, fueled by the era of digital convergence. Improvements in process technology have effectively shrunk board-level components so they can be integrated on a single chip. New on-chip communication architectures have been designed to support all inter-component communication in a SoC design. These communication architecture fabrics have a critical impact on the power consumption, performance, cost and design cycle time of modern SoC designs. As application complexity strains the communication backbone of SoC designs, academic and industrial R & D efforts and dollars are increasingly focused on communication architecture design. This book is a comprehensive reference on concepts, research and trends in on-chip communication architecture design. It will provide readers with a comprehensive survey, not available elsewhere, of all current standards for on-chip communication architectures. KEY FEATURES * A definitive guide to on-chip communication architectures, explaining key concepts, surveying research efforts and predicting future trends * Detailed analysis of all popular standards for on-chip communication architectures * Comprehensive survey of all research on communication architectures, covering a wide range of topics relevant to this area, spanning the past several years, and up to date with the most current research efforts * Future trends that with have a significant impact on research and design of communication architectures over the next several years.
Choose an application
While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve the accuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniques that utilize emerging deep machine learning and statistical techniques to address the challenges for indoor localization and navigation. In particular, the book: Provides comprehensive coverage of the application of machine learning to the domain of indoor localization; Presents techniques to adapt and optimize machine learning models for fast, energy-efficient indoor localization; Covers design and deployment of indoor localization frameworks on mobile, IoT, and embedded devices in real conditions.
Electronics --- Computer architecture. Operating systems --- Computer. Automation --- microprocessoren --- embedded systems --- algoritmen --- architectuur (informatica)
Choose an application
This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits. Discusses efficient implementation of machine learning in embedded, CPS, IoT, and edge computing; Offers comprehensive coverage of hardware design, software design, and hardware/software co-design and co-optimization; Describes real applications todemonstrate how embedded, CPS, IoT, and edge applications benefit from machine learning.
Embedded computer systems. --- Cooperating objects (Computer systems). --- Artificial intelligence. --- Embedded Systems. --- Cyber-Physical Systems. --- Artificial Intelligence. --- Sistemes incrustats (Informàtica) --- Objectes cooperants (Sistemes informàtics) --- Informàtica a la perifèria --- Aprenentatge automàtic
Choose an application
Choose an application
Electrical engineering --- Computer architecture. Operating systems --- Computer. Automation --- embedded systems --- algoritmen --- elektrische circuits
Choose an application
Electrical engineering --- Computer architecture. Operating systems --- Computer. Automation --- embedded systems --- algoritmen --- elektrische circuits
Listing 1 - 10 of 14 | << page >> |
Sort by
|