Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Choose an application
Choose an application
The main goal of this Special Issue was to contribute to, highlight and discuss topics related to various aspects of two-phase gas–liquid flows, which can be used both in fundamental sciences and practical applications, and we believe that this main goal was successfully achieved. This Special Issue received studies from Russia, China, Thailand, ROC-Taiwan, Saudi Arabia, and Pakistan. We were very grateful to see that all the papers presented findings characterized as unconventional, innovative, and methodologically new. We hope that the readers of the journal Water can enjoy and learn about the experimental and numerical study of two-phase flows from the published material, and share these results with the scientific community, policymakers and stakeholders. Last but not least, we would like to thank Ms. Aroa Wang, Assistant Editor at MDPI, for her dedication and willingness to publish this Special Issue. She is a major supporter of the Special Issues, and we are indebted to her.
Technology: general issues --- History of engineering & technology --- self-aeration --- chute flow --- air concentration --- velocity --- experimental study --- water vapor --- coherent phase --- exclusion zone --- redox potential --- pH --- infrared --- microdroplets --- wall shear stress --- oscillating two-phase fluctuation flow --- heat transfer --- magnetohydrodynamic (MHD) --- dust particles --- capillary waves --- surface wave --- subharmonic --- resonance --- COMSOL --- ultrasonic atomizer --- oil–water–gas flow --- flow pattern --- water holdup --- dimensionless analysis --- hydrodynamics --- high reduced pressure --- flow boiling --- turbulent bubbly flow --- backward-facing step --- PIV/PLIF measurements --- RANS modeling --- flow structure --- gas-droplet turbulent flow --- droplet vaporization and dispersion --- Eulerian modeling --- spray cooling --- transparent heater --- high-speed video recording --- infrared thermography --- n/a --- oil-water-gas flow
Choose an application
The main goal of this Special Issue was to contribute to, highlight and discuss topics related to various aspects of two-phase gas–liquid flows, which can be used both in fundamental sciences and practical applications, and we believe that this main goal was successfully achieved. This Special Issue received studies from Russia, China, Thailand, ROC-Taiwan, Saudi Arabia, and Pakistan. We were very grateful to see that all the papers presented findings characterized as unconventional, innovative, and methodologically new. We hope that the readers of the journal Water can enjoy and learn about the experimental and numerical study of two-phase flows from the published material, and share these results with the scientific community, policymakers and stakeholders. Last but not least, we would like to thank Ms. Aroa Wang, Assistant Editor at MDPI, for her dedication and willingness to publish this Special Issue. She is a major supporter of the Special Issues, and we are indebted to her.
self-aeration --- chute flow --- air concentration --- velocity --- experimental study --- water vapor --- coherent phase --- exclusion zone --- redox potential --- pH --- infrared --- microdroplets --- wall shear stress --- oscillating two-phase fluctuation flow --- heat transfer --- magnetohydrodynamic (MHD) --- dust particles --- capillary waves --- surface wave --- subharmonic --- resonance --- COMSOL --- ultrasonic atomizer --- oil–water–gas flow --- flow pattern --- water holdup --- dimensionless analysis --- hydrodynamics --- high reduced pressure --- flow boiling --- turbulent bubbly flow --- backward-facing step --- PIV/PLIF measurements --- RANS modeling --- flow structure --- gas-droplet turbulent flow --- droplet vaporization and dispersion --- Eulerian modeling --- spray cooling --- transparent heater --- high-speed video recording --- infrared thermography --- n/a --- oil-water-gas flow
Choose an application
The main goal of this Special Issue was to contribute to, highlight and discuss topics related to various aspects of two-phase gas–liquid flows, which can be used both in fundamental sciences and practical applications, and we believe that this main goal was successfully achieved. This Special Issue received studies from Russia, China, Thailand, ROC-Taiwan, Saudi Arabia, and Pakistan. We were very grateful to see that all the papers presented findings characterized as unconventional, innovative, and methodologically new. We hope that the readers of the journal Water can enjoy and learn about the experimental and numerical study of two-phase flows from the published material, and share these results with the scientific community, policymakers and stakeholders. Last but not least, we would like to thank Ms. Aroa Wang, Assistant Editor at MDPI, for her dedication and willingness to publish this Special Issue. She is a major supporter of the Special Issues, and we are indebted to her.
Technology: general issues --- History of engineering & technology --- self-aeration --- chute flow --- air concentration --- velocity --- experimental study --- water vapor --- coherent phase --- exclusion zone --- redox potential --- pH --- infrared --- microdroplets --- wall shear stress --- oscillating two-phase fluctuation flow --- heat transfer --- magnetohydrodynamic (MHD) --- dust particles --- capillary waves --- surface wave --- subharmonic --- resonance --- COMSOL --- ultrasonic atomizer --- oil-water-gas flow --- flow pattern --- water holdup --- dimensionless analysis --- hydrodynamics --- high reduced pressure --- flow boiling --- turbulent bubbly flow --- backward-facing step --- PIV/PLIF measurements --- RANS modeling --- flow structure --- gas-droplet turbulent flow --- droplet vaporization and dispersion --- Eulerian modeling --- spray cooling --- transparent heater --- high-speed video recording --- infrared thermography
Choose an application
In this book the author presents selected challenges of thermal-hydraulics modeling of two-phase flows in minichannels with change of phase. These encompass the common modeling of flow boiling and flow condensation using the same expression. Approaches to model these two respective cases show, however, that experimental data show different results to those obtained by methods of calculation of heat transfer coefficient for respective cases. Partially that can be devoted to the fact that there are non-adiabatic effects present in both types of phase change phenomena which modify the pressure drop due to friction, responsible for appropriate modelling. The modification of interface shear stresses between flow boiling and flow condensation in case of annular flow structure may be considered through incorporation of the so called blowing parameter, which differentiates between these two modes of heat transfer. On the other hand, in case of bubbly flows, the generation of bubbles also modifies the friction pressure drop by the influence of heat flux. Presented are also the results of a peculiar M-shape distribution of heat transfer coefficient specific to flow boiling in minichannels. Finally, some attention is devoted to mathematical modeling of dryout phenomena. A five equation model enabling determination of the dryout location is presented, where the mass balance equations for liquid film, droplets and gas are supplemented by momentum equations for liquid film and two-phase core.
Fluid dynamics -- Experiments. --- Fluid dynamics. --- Laminar flow -- Experiments. --- Turbulence -- Experiments. --- Civil & Environmental Engineering --- Engineering & Applied Sciences --- Civil Engineering --- Fluid dynamics --- Laminar flow --- Turbulence --- Experiments. --- Flow, Turbulent --- Turbulent flow --- Engineering. --- Fluids. --- Thermodynamics. --- Heat engineering. --- Heat transfer. --- Mass transfer. --- Fluid mechanics. --- Engineering Fluid Dynamics. --- Fluid- and Aerodynamics. --- Engineering Thermodynamics, Heat and Mass Transfer. --- Hydromechanics --- Continuum mechanics --- Mass transport (Physics) --- Thermodynamics --- Transport theory --- Heat transfer --- Thermal transfer --- Transmission of heat --- Energy transfer --- Heat --- Mechanical engineering --- Chemistry, Physical and theoretical --- Dynamics --- Mechanics --- Physics --- Heat-engines --- Quantum theory --- Hydraulics --- Hydrostatics --- Permeability --- Construction --- Industrial arts --- Technology --- Fluid mechanics --- Hydraulic engineering. --- Engineering, Hydraulic --- Engineering --- Shore protection
Choose an application
In this book the author presents selected challenges of thermal-hydraulics modeling of two-phase flows in minichannels with change of phase. These encompass the common modeling of flow boiling and flow condensation using the same expression. Approaches to model these two respective cases show, however, that experimental data show different results to those obtained by methods of calculation of heat transfer coefficient for respective cases. Partially that can be devoted to the fact that there are non-adiabatic effects present in both types of phase change phenomena which modify the pressure drop due to friction, responsible for appropriate modelling. The modification of interface shear stresses between flow boiling and flow condensation in case of annular flow structure may be considered through incorporation of the so called blowing parameter, which differentiates between these two modes of heat transfer. On the other hand, in case of bubbly flows, the generation of bubbles also modifies the friction pressure drop by the influence of heat flux. Presented are also the results of a peculiar M-shape distribution of heat transfer coefficient specific to flow boiling in minichannels. Finally, some attention is devoted to mathematical modeling of dryout phenomena. A five equation model enabling determination of the dryout location is presented, where the mass balance equations for liquid film, droplets and gas are supplemented by momentum equations for liquid film and two-phase core.
Fluid mechanics --- Thermodynamics --- Mechanical properties of solids --- Hydraulic energy --- Applied physical engineering --- vloeistofstroming --- thermodynamica --- aerodynamica --- ingenieurswetenschappen --- hydraulica --- vloeistoffen --- warmteoverdracht
Listing 1 - 7 of 7 |
Sort by
|