Listing 1 - 10 of 17 | << page >> |
Sort by
|
Choose an application
"An important topic, which is on the boundary between numerical analysis and computer science…. I found the book well written and containing much interesting material, most of the time disseminated in specialized papers published in specialized journals difficult to find. Moreover, there are very few books on these topics and they are not recent." –Numerical Algorithms (review of the first edition) This unique book provides concepts and background necessary to understand and build algorithms for computing the elementary functions—sine, cosine, tangent, exponentials, and logarithms. The author presents and structures the algorithms, hardware-oriented as well as software-oriented, and also discusses issues related to accurate floating-point implementation. The purpose is not to give "cookbook recipes" that allow one to implement a given function, but rather to provide the reader with tools necessary to build or adapt algorithms for their specific computing environment. This expanded second edition contains a number of revisions and additions, which incorporate numerous new results obtained during the last few years. New algorithms invented since 1997—such as Matula’s bipartite method, another table-based method due to Ercegovac, Lang, Tisserand, and Muller—as well as new chapters on multiple-precision arithmetic and examples of implementation have been added. In addition, the section on correct rounding of elementary functions has been fully reworked, also in the context of new results. Finally, the introductory presentation of floating-point arithmetic has been expanded, with more emphasis given to the use of the fused multiply-accumulate instruction. The book is an up-to-date presentation of information needed to understand and accurately use mathematical functions and algorithms in computational work and design. Graduate and advanced undergraduate students, professionals, and researchers in scientific computing, numerical analysis, software engineering, and computer engineering will find the book a useful reference and resource.
Functions --- Algorithms. --- Data processing. --- Algorism --- Algebra --- Arithmetic --- Foundations --- Information theory. --- Computer network architectures. --- Mathematics. --- Electronic data processing. --- Computer science. --- Theory of Computation. --- Computer System Implementation. --- Applications of Mathematics. --- Numeric Computing. --- Computational Science and Engineering. --- Mathematics of Computing. --- Informatics --- Science --- ADP (Data processing) --- Automatic data processing --- Data processing --- EDP (Data processing) --- IDP (Data processing) --- Integrated data processing --- Computers --- Office practice --- Math --- Architectures, Computer network --- Network architectures, Computer --- Computer architecture --- Communication theory --- Communication --- Cybernetics --- Automation --- Computers. --- Architecture, Computer. --- Applied mathematics. --- Engineering mathematics. --- Numerical analysis. --- Computer mathematics. --- Computer science—Mathematics. --- Computer mathematics --- Electronic data processing --- Mathematics --- Mathematical analysis --- Engineering --- Engineering analysis --- Architecture, Computer --- Automatic computers --- Automatic data processors --- Computer hardware --- Computing machines (Computers) --- Electronic brains --- Electronic calculating-machines --- Electronic computers --- Hardware, Computer --- Computer systems --- Machine theory --- Calculators --- Cyberspace --- Analyse numérique. --- Numerical analysis --- Algorithmes --- Algorithms --- Analyse numérique --- Fonctions elementaires --- Computer architecture. --- Computer science
Choose an application
Floating-point arithmetic is by far the most widely used way of implementing real-number arithmetic on modern computers. Although the basic principles of floating-point arithmetic can be explained in a short amount of time, making such an arithmetic reliable and portable, yet fast, is a very difficult task. From the 1960s to the early 1980s, many different arithmetics were developed, but their implementation varied widely from one machine to another, making it difficult for nonexperts to design, learn, and use the required algorithms. As a result, floating-point arithmetic is far from being exploited to its full potential. This handbook aims to provide a complete overview of modern floating-point arithmetic, including a detailed treatment of the newly revised (IEEE 754-2008) standard for floating-point arithmetic. Presented throughout are algorithms for implementing floating-point arithmetic as well as algorithms that use floating-point arithmetic. So that the techniques presented can be put directly into practice in actual coding or design, they are illustrated, whenever possible, by a corresponding program. Key topics and features include: * Presentation of the history and basic concepts of floating-point arithmetic and various aspects of the past and current standards * Development of smart and nontrivial algorithms, and algorithmic possibilities induced by the availability of a fused multiply-add (fma) instruction, e.g., correctly rounded software division and square roots * Implementation of floating-point arithmetic, either in software—on an integer processor—or hardware, and a discussion of issues related to compilers and languages * Coverage of several recent advances related to elementary functions: correct rounding of these functions and computation of very accurate approximations under constraints * Extensions of floating-point arithmetic such as certification, verification, and big precision Handbook of Floating-Point Arithmetic is designed for programmers of numerical applications, compiler designers, programmers of floating-point algorithms, designers of arithmetic operators, and more generally, students and researchers in numerical analysis who wish to better understand a tool used in their daily work and research. .
Algorithms. --- Computer arithmetic. --- Floating-point arithmetic. --- Floating-point arithmetic --- Computer arithmetic --- Engineering & Applied Sciences --- Mathematics --- Physical Sciences & Mathematics --- Computer Science --- Mathematics - General --- Computer science --- Computer mathematics --- Discrete mathematics --- Electronic data processing --- Digital arithmetic --- Digital computer arithmetic --- Mathematics. --- Programming languages (Electronic computers). --- Computer mathematics. --- Applied mathematics. --- Engineering mathematics. --- Computational Mathematics and Numerical Analysis. --- Algorithm Analysis and Problem Complexity. --- Math Applications in Computer Science. --- Appl.Mathematics/Computational Methods of Engineering. --- Programming Languages, Compilers, Interpreters. --- Arithmetic --- Computer architecture --- Computer software. --- Computer science. --- Mathematical and Computational Engineering. --- Engineering --- Engineering analysis --- Mathematical analysis --- Informatics --- Science --- Algorism --- Algebra --- Software, Computer --- Computer systems --- Foundations --- Computer science—Mathematics. --- Computer languages --- Computer program languages --- Computer programming languages --- Machine language --- Languages, Artificial
Choose an application
This textbook presents the concepts and tools necessary to understand, build, and implement algorithms for computing elementary functions (e.g., logarithms, exponentials, and the trigonometric functions). Both hardware- and software-oriented algorithms are included, along with issues related to accurate floating-point implementation. This third edition has been updated and expanded to incorporate the most recent advances in the field, new elementary function algorithms, and function software. After a preliminary chapter that briefly introduces some fundamental concepts of computer arithmetic, such as floating-point arithmetic and redundant number systems, the text is divided into three main parts. Part I considers the computation of elementary functions using algorithms based on polynomial or rational approximations and using table-based methods; the final chapter in this section deals with basic principles of multiple-precision arithmetic. Part II is devoted to a presentation of “shift-and-add” algorithms (hardware-oriented algorithms that use additions and shifts only). Issues related to accuracy, including range reduction, preservation of monotonicity, and correct rounding, as well as some examples of implementation are explored in Part III. Numerous examples of command lines and full programs are provided throughout for various software packages, including Maple, Sollya, and Gappa. New to this edition are an in-depth overview of the IEEE-754-2008 standard for floating-point arithmetic; a section on using double- and triple-word numbers; a presentation of new tools for designing accurate function software; and a section on the Toom-Cook family of multiplication algorithms. The techniques presented in this book will be of interest to implementers of elementary function libraries or circuits and programmers of numerical applications. Additionally, graduate and advanced undergraduate students, professionals, and researchers in scientific computing, numerical analysis, software engineering, and computer engineering will find this a useful reference and resource. PRAISE FOR PREVIOUS EDITIONS “[T]his book seems like an essential reference for the experts (which I'm not). More importantly, this is an interesting book for the curious (which I am). In this case, you'll probably learn many interesting things from this book. If you teach numerical analysis or approximation theory, then this book will give you some good examples to discuss in class." — MAA Reviews (Review of Second Edition) "The rich content of ideas sketched or presented in some detail in this book is supplemented by a list of over three hundred references, most of them of 1980 or more recent. The book also contains some relevant typical programs." — Zentralblatt MATH (Review of Second Edition) “I think that the book will be very valuable to students both in numerical analysis and in computer science. I found [it to be] well written and containing much interesting material, most of the time disseminated in specialized papers published in specialized journals difficult to find." — Numerical Algorithms (Review of First Edition).
Mathematics. --- Numerical analysis. --- Applied mathematics. --- Engineering mathematics. --- Algorithms. --- Computer mathematics. --- Computational Science and Engineering. --- Numeric Computing. --- Applications of Mathematics. --- Computer mathematics --- Discrete mathematics --- Electronic data processing --- Algorism --- Engineering --- Engineering analysis --- Math --- Mathematics --- Computer science. --- Electronic data processing. --- ADP (Data processing) --- Automatic data processing --- Data processing --- EDP (Data processing) --- IDP (Data processing) --- Integrated data processing --- Computers --- Office practice --- Informatics --- Science --- Algebra --- Arithmetic --- Automation --- Foundations --- Functions --- Data processing. --- Mathematical analysis
Choose an application
Choose an application
Choose an application
This textbook presents the concepts and tools necessary to understand, build, and implement algorithms for computing elementary functions (e.g., logarithms, exponentials, and the trigonometric functions). Both hardware- and software-oriented algorithms are included, along with issues related to accurate floating-point implementation. This third edition has been updated and expanded to incorporate the most recent advances in the field, new elementary function algorithms, and function software. After a preliminary chapter that briefly introduces some fundamental concepts of computer arithmetic, such as floating-point arithmetic and redundant number systems, the text is divided into three main parts. Part I considers the computation of elementary functions using algorithms based on polynomial or rational approximations and using table-based methods; the final chapter in this section deals with basic principles of multiple-precision arithmetic. Part II is devoted to a presentation of “shift-and-add” algorithms (hardware-oriented algorithms that use additions and shifts only). Issues related to accuracy, including range reduction, preservation of monotonicity, and correct rounding, as well as some examples of implementation are explored in Part III. Numerous examples of command lines and full programs are provided throughout for various software packages, including Maple, Sollya, and Gappa. New to this edition are an in-depth overview of the IEEE-754-2008 standard for floating-point arithmetic; a section on using double- and triple-word numbers; a presentation of new tools for designing accurate function software; and a section on the Toom-Cook family of multiplication algorithms. The techniques presented in this book will be of interest to implementers of elementary function libraries or circuits and programmers of numerical applications. Additionally, graduate and advanced undergraduate students, professionals, and researchers in scientific computing, numerical analysis, software engineering, and computer engineering will find this a useful reference and resource. PRAISE FOR PREVIOUS EDITIONS “[T]his book seems like an essential reference for the experts (which I'm not). More importantly, this is an interesting book for the curious (which I am). In this case, you'll probably learn many interesting things from this book. If you teach numerical analysis or approximation theory, then this book will give you some good examples to discuss in class." — MAA Reviews (Review of Second Edition) "The rich content of ideas sketched or presented in some detail in this book is supplemented by a list of over three hundred references, most of them of 1980 or more recent. The book also contains some relevant typical programs." — Zentralblatt MATH (Review of Second Edition) “I think that the book will be very valuable to students both in numerical analysis and in computer science. I found [it to be] well written and containing much interesting material, most of the time disseminated in specialized papers published in specialized journals difficult to find." — Numerical Algorithms (Review of First Edition).
Numerical analysis --- Mathematics --- Applied physical engineering --- Computer science --- Computer. Automation --- toegepaste wiskunde --- computers --- economie --- informatica --- wiskunde --- algoritmen --- informaticaonderzoek --- numerieke analyse
Choose an application
Choose an application
Choose an application
Computer Arithmetic --- Digital arithmetic --- Digital computer arithmetic --- Arithmetic --- Computer architecture
Choose an application
"An important topic, which is on the boundary between numerical analysis and computer science ¦. I found the book well written and containing much interesting material, most of the time disseminated in specialized papers published in specialized journals difficult to find. Moreover, there are very few books on these topics and they are not recent." -Numerical Algorithms (review of the first edition) This unique book provides concepts and background necessary to understand and build algorithms for computing the elementary functions sine, cosine, tangent, exponentials, and logarithms. The author presents and structures the algorithms, hardware-oriented as well as software-oriented, and also discusses issues related to accurate floating-point implementation. The purpose is not to give "cookbook recipes" that allow one to implement a given function, but rather to provide the reader with tools necessary to build or adapt algorithms for their specific computing environment. This expanded second edition contains a number of revisions and additions, which incorporate numerous new results obtained during the last few years. New algorithms invented since 1997 such as Matula's bipartite method, another table-based method due to Ercegovac, Lang, Tisserand, and Muller as well as new chapters on multiple-precision arithmetic and examples of implementation have been added. In addition, the section on correct rounding of elementary functions has been fully reworked, also in the context of new results. Finally, the introductory presentation of floating-point arithmetic has been expanded, with more emphasis given to the use of the fused multiply-accumulate instruction. The book is an up-to-date presentation of information needed to understand and accurately use mathematical functions and algorithms in computational work and design. Graduate and advanced undergraduate students, professionals, and researchers in scientific computing, numerical analysis, software engineering, and computer engineering will find the book a useful reference and resource.
Listing 1 - 10 of 17 | << page >> |
Sort by
|