Narrow your search

Library

AP (1)

FARO (1)

KDG (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

UGent (1)

More...

Resource type

book (3)

digital (1)


Language

English (4)


Year
From To Submit

2024 (1)

2022 (3)

Listing 1 - 4 of 4
Sort by

Book
Symmetry in the Mathematical Inequalities
Author:
ISBN: 3036540059 3036540067 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Symmetry in the Mathematical Inequalities
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue brings together original research papers, in all areas of mathematics, that are concerned with inequalities or the role of inequalities. The research results presented in this Special Issue are related to improvements in classical inequalities, highlighting their applications and promoting an exchange of ideas between mathematicians from many parts of the world dedicated to the theory of inequalities. This volume will be of interest to mathematicians specializing in inequality theory and beyond. Many of the studies presented here can be very useful in demonstrating new results. It is our great pleasure to publish this book. All contents were peer-reviewed by multiple referees and published as papers in our Special Issue in the journal Symmetry. These studies give new and interesting results in mathematical inequalities enabling readers to obtain the latest developments in the fields of mathematical inequalities. Finally, we would like to thank all the authors who have published their valuable work in this Special Issue. We would also like to thank the editors of the journal Symmetry for their help in making this volume, especially Mrs. Teresa Yu.

Keywords

Ostrowski inequality --- Hölder’s inequality --- power mean integral inequality --- n-polynomial exponentially s-convex function --- weight coefficient --- Euler–Maclaurin summation formula --- Abel’s partial summation formula --- half-discrete Hilbert-type inequality --- upper limit function --- Hermite–Hadamard inequality --- (p, q)-calculus --- convex functions --- trapezoid-type inequality --- fractional integrals --- functions of bounded variations --- (p,q)-integral --- post quantum calculus --- convex function --- a priori bounds --- 2D primitive equations --- continuous dependence --- heat source --- Jensen functional --- A-G-H inequalities --- global bounds --- power means --- Simpson-type inequalities --- thermoelastic plate --- Phragmén-Lindelöf alternative --- Saint-Venant principle --- biharmonic equation --- symmetric function --- Schur-convexity --- inequality --- special means --- Shannon entropy --- Tsallis entropy --- Fermi–Dirac entropy --- Bose–Einstein entropy --- arithmetic mean --- geometric mean --- Young’s inequality --- Simpson’s inequalities --- post-quantum calculus --- spatial decay estimates --- Brinkman equations --- midpoint and trapezoidal inequality --- Simpson’s inequality --- harmonically convex functions --- Simpson inequality --- (n,m)–generalized convexity --- n/a --- Hölder's inequality --- Euler-Maclaurin summation formula --- Abel's partial summation formula --- Hermite-Hadamard inequality --- Phragmén-Lindelöf alternative --- Fermi-Dirac entropy --- Bose-Einstein entropy --- Young's inequality --- Simpson's inequalities --- Simpson's inequality --- (n,m)-generalized convexity


Book
Symmetry in the Mathematical Inequalities
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue brings together original research papers, in all areas of mathematics, that are concerned with inequalities or the role of inequalities. The research results presented in this Special Issue are related to improvements in classical inequalities, highlighting their applications and promoting an exchange of ideas between mathematicians from many parts of the world dedicated to the theory of inequalities. This volume will be of interest to mathematicians specializing in inequality theory and beyond. Many of the studies presented here can be very useful in demonstrating new results. It is our great pleasure to publish this book. All contents were peer-reviewed by multiple referees and published as papers in our Special Issue in the journal Symmetry. These studies give new and interesting results in mathematical inequalities enabling readers to obtain the latest developments in the fields of mathematical inequalities. Finally, we would like to thank all the authors who have published their valuable work in this Special Issue. We would also like to thank the editors of the journal Symmetry for their help in making this volume, especially Mrs. Teresa Yu.

Keywords

Research & information: general --- Geography --- Ostrowski inequality --- Hölder's inequality --- power mean integral inequality --- n-polynomial exponentially s-convex function --- weight coefficient --- Euler-Maclaurin summation formula --- Abel's partial summation formula --- half-discrete Hilbert-type inequality --- upper limit function --- Hermite-Hadamard inequality --- (p, q)-calculus --- convex functions --- trapezoid-type inequality --- fractional integrals --- functions of bounded variations --- (p,q)-integral --- post quantum calculus --- convex function --- a priori bounds --- 2D primitive equations --- continuous dependence --- heat source --- Jensen functional --- A-G-H inequalities --- global bounds --- power means --- Simpson-type inequalities --- thermoelastic plate --- Phragmén-Lindelöf alternative --- Saint-Venant principle --- biharmonic equation --- symmetric function --- Schur-convexity --- inequality --- special means --- Shannon entropy --- Tsallis entropy --- Fermi-Dirac entropy --- Bose-Einstein entropy --- arithmetic mean --- geometric mean --- Young's inequality --- Simpson's inequalities --- post-quantum calculus --- spatial decay estimates --- Brinkman equations --- midpoint and trapezoidal inequality --- Simpson's inequality --- harmonically convex functions --- Simpson inequality --- (n,m)-generalized convexity --- Ostrowski inequality --- Hölder's inequality --- power mean integral inequality --- n-polynomial exponentially s-convex function --- weight coefficient --- Euler-Maclaurin summation formula --- Abel's partial summation formula --- half-discrete Hilbert-type inequality --- upper limit function --- Hermite-Hadamard inequality --- (p, q)-calculus --- convex functions --- trapezoid-type inequality --- fractional integrals --- functions of bounded variations --- (p,q)-integral --- post quantum calculus --- convex function --- a priori bounds --- 2D primitive equations --- continuous dependence --- heat source --- Jensen functional --- A-G-H inequalities --- global bounds --- power means --- Simpson-type inequalities --- thermoelastic plate --- Phragmén-Lindelöf alternative --- Saint-Venant principle --- biharmonic equation --- symmetric function --- Schur-convexity --- inequality --- special means --- Shannon entropy --- Tsallis entropy --- Fermi-Dirac entropy --- Bose-Einstein entropy --- arithmetic mean --- geometric mean --- Young's inequality --- Simpson's inequalities --- post-quantum calculus --- spatial decay estimates --- Brinkman equations --- midpoint and trapezoidal inequality --- Simpson's inequality --- harmonically convex functions --- Simpson inequality --- (n,m)-generalized convexity


Digital
New Frontiers in Number Theory and Applications
Authors: --- --- --- ---
ISBN: 9783031519598 9783031519581 9783031519604 9783031519611 Year: 2024 Publisher: Cham Springer Nature Switzerland :; Imprint: Birkhäuser

Loading...
Export citation

Choose an application

Bookmark

Abstract

Listing 1 - 4 of 4
Sort by