Listing 1 - 10 of 17 | << page >> |
Sort by
|
Choose an application
The interfacial behaviour of surfactants and proteins, and their mixtures, is of importance in a wide range of areas such as food technology, detergency, cosmetics, coating processes, biomedicine, pharmacy and biotechnology. Methods such as surface and interfacial tension measurements and interfacial dilation and shear rheology characterise the relationships between these interfacial properties and the complex behaviour of foams and emulsions is established. Recently-developed experimental techniques, such as FRAP which enable the measurement of molecular mobility in adsorption layers, are cov
Adsorption --- Surface active agents --- Proteins --- Liquid-liquid interfaces --- Agents tensio-actifs --- Protéines --- Interfaces liquide-liquide --- Adsorption. --- Liquid-liquid interfaces. --- Proteins. --- Surface active agents. --- Protéines --- Interfaces (Physical sciences) --- Proteids --- Biomolecules --- Polypeptides --- Proteomics --- Surfactants --- Chemistry, Organic --- Surface tension --- Wetting agents --- Sorption --- Separation (Technology) --- Surface chemistry
Choose an application
This book presents a number of selected papers given at the LB9 conference, held in Potsdam, Germany, in August 2000. It is dedicated to new techniques and methodologies for studying interfacial layers. One group of manuscripts deals with the application of surface plasmons at solid interfaces, used for example in resonance spectroscopy and light scattering. New applications of various types of Atomic Force Microscopy are reported making use of various modifications of tips. A number of chapters are dedicated to light emitting diodes built with the help of LB layers. The aim of these studies i
Choose an application
The shape of drops and bubbles is the centre of interest for many interfacial scientists. This book describes the most recent accomplishments to make use of drops and bubbles in fundamental research and application. After a general introduction into the mechanics of liquid menisci, chapters are dedicated to methods based on drops or bubbles. The chapters about the three main drop experiments provide the theoretical basis, a description of experimental set-ups, specific advantages and disadvantages, correction and calibration problems, experimental examples and their interpretation: pende
Pure sciences. Natural sciences (general) --- Interfaces (Physical sciences) --- Surface tension. --- Drops. --- Bubbles. --- Air --- Gases --- Drips --- Droplets --- Liquids --- Spheroidal state --- Surface phenomena --- Capillarity --- Surface chemistry --- Surface energy --- Wetting --- Surfaces (Physics)
Choose an application
This title presents the state-of-the-art in molecular engineering and new developments in the fields of materials science, membrane biophysics, interfaces, sensing, and intermolecular interactions including molecular recognition.Topics covered are: the organization (orientation and association) of molecules in ultrathin films (monolayers) at the air/water interface; long range order in these films and in assemblies of such films on solid substrates; the interactions with solutes in the aqueous phase (including tensides, enzymes and analytes); and the potential applications of ultrathin
Monomolecular films --- Gas-solid interfaces --- Couches monomoléculaires --- Interfaces gaz-solide --- Monomolecular films. --- Gas-solid interfaces. --- Solid-gas interfaces --- Interfaces (Physical sciences) --- Molecular films --- Monolayers --- Unilayers --- Thin films
Choose an application
This title presents the state-of-the-art in molecular engineering and new developments in the fields of materials science, membrane biophysics, interfaces, sensing, and intermolecular interactions including molecular recognition.Topics covered are: the organization (orientation and association) of molecules in ultrathin films (monolayers) at the air/water interface; long range order in these films and in assemblies of such films on solid substrates; the interactions with solutes in the aqueous phase (including tensides, enzymes and analytes); and the potential applications of ultrathin
Monomolecular films --- Gas-solid interfaces --- Couches monomoléculaires --- Interfaces gaz-solide --- Monomolecular films. --- Gas-solid interfaces.
Choose an application
The interfacial behaviour of surfactants and proteins, and their mixtures, is of importance in a wide range of areas such as food technology, detergency, cosmetics, coating processes, biomedicine, pharmacy and biotechnology. Methods such as surface and interfacial tension measurements and interfacial dilation and shear rheology characterise the relationships between these interfacial properties and the complex behaviour of foams and emulsions is established. Recently-developed experimental techniques, such as FRAP which enable the measurement of molecular mobility in adsorption layers, are covered in this volume. The development of theories to describe the thermodynamic surface state or the exchange of matter for proteins and protein/surfactant mixtures is also described. Features of this book: & bull; Reflects the state-of-the-art research and application of protein interfacial layers rather than a snapshot of only some recent developments. & bull; Emphasis is placed on experimental details as well as recent theoretical developments. & bull; New experimental techniques applied to protein interfacial layers are described, such as FRAP or ADSA, or rheological methods to determine the mechanical behaviour of protein-modified interfaces. & bull; A large number of practical applications, ranging from emulsions relevant in food technology for medical problems such as lung surfactants, to the characterisation of foams intrinsic to beer and champagne production. The book will be of interest to research and university institutes dedicated to interfacial studies in chemistry, biology, pharmacy, medicine and food engineering. Industrial departments for research and technology in food industry, pharmacy, medicine and brewery research will also find this volume of value.
Choose an application
This book presents a number of selected papers given at the LB9 conference, held in Potsdam, Germany, in August 2000. It is dedicated to new techniques and methodologies for studying interfacial layers. One group of manuscripts deals with the application of surface plasmons at solid interfaces, used for example in resonance spectroscopy and light scattering. New applications of various types of Atomic Force Microscopy are reported making use of various modifications of tips. A number of chapters are dedicated to light emitting diodes built with the help of LB layers. The aim of these studies i
Choose an application
The shape of drops and bubbles is the centre of interest for many interfacial scientists. This book describes the most recent accomplishments to make use of drops and bubbles in fundamental research and application. After a general introduction into the mechanics of liquid menisci, chapters are dedicated to methods based on drops or bubbles. The chapters about the three main drop experiments provide the theoretical basis, a description of experimental set-ups, specific advantages and disadvantages, correction and calibration problems, experimental examples and their interpretation: pendent and sessile drop, drop volume, and spinning drop technique. The chapter about capillary pressure methods summarises different techniques and gives examples of applications, for instance measurements under microgravity. The maximum bubble pressure technique as a particular capillary pressure method is described, with emphasis on the most recent developments which made this technique applicable to extremely short adsorption times, down to the range of milliseconds and less. Problems connected with aerodynamics and hydrodynamics are discussed and used to show the limits of this widely used standard method. The oscillating bubble technique provides information not available by other techniques, for example about the dilational rheology of adsorption layers and relaxation processes at the interface. The description of rising bubbles in surfactant solutions will contain the hydrodynamic basis as well as the theoretical description of the effect of interfacial layers on the movement of bubbles. Besides the theoretical basis experimental data, such as water purification, flotation processes etc. and the relevance for practical applications will be presented. The chapter about lung alveols demonstrates how important bubbles built by biological membranes are in everyday life. The relevance for medicine and biology as well as model studies is discussed. An important example for the application of drops is metallurgy, where the surface tension of metals and alloys is an important parameter for many applications. The chapters on drop shape analysis by using fibre technique and on force measurements between emulsion droplets are of much practical relevance. Lists of references and symbols are given separately at the end of each chapter while a common subject index is given at the end of the book.
Choose an application
As the first of its kind, this book provides a valuable introduction for scientists and engineers interested in liquid/fluid interfaces and disperse systems to the rapidly developing area of adsorption dynamics. It is the first extensive review available on the subject of dynamics of adsorption and gives a general summary of the current state of adsorption kinetics theory and experiments. Current progress in recently designed set-ups and improved and generalised known methods for studying interfacial relaxations is reviewed. In addition, the role of the electric charge of surfactants in the ad
Surface chemistry --- fysicochemie --- Interfaces (Physical sciences) --- Adsorption. --- Surfaces (Physics) --- Sorption --- Separation (Technology)
Choose an application
As the first of its kind, this book provides a valuable introduction for scientists and engineers interested in liquid/fluid interfaces and disperse systems to the rapidly developing area of adsorption dynamics. It is the first extensive review available on the subject of dynamics of adsorption and gives a general summary of the current state of adsorption kinetics theory and experiments. Current progress in recently designed set-ups and improved and generalised known methods for studying interfacial relaxations is reviewed. In addition, the role of the electric charge of surfactants in the adsorption process is discussed in terms of a non-equilibrium distribution of adsorbing ions in the diffuse layer. Present theories of the effect of dynamic adsorption layers on mobile surfaces, such as moving drops and bubbles, based on both diffusion and kinetic controlled adsorption models are described and efficient approximate analytical methods to solve the mathematical problem of coupling surfactant transport and hydrodynamics are introduced. The role of a dynamic adsorption layer in bubble rising, film drainage and film stabilisation and in complex processes such as flotation and microflotation is discussed. Containing more than 1100 references, the book is essential reading for industrial scientists and graduate and post-graduate students in physical, surface and colloid chemistry, physico-chemical hydrodynamics, water purification and mineral processing.
Listing 1 - 10 of 17 | << page >> |
Sort by
|