Listing 1 - 2 of 2 |
Sort by
|
Choose an application
Identifying plagiarism is a pressing problem for research institutions, publishers, and funding bodies. Current detection methods focus on textual analysis and find copied, moderately reworded, or translated content. However, detecting more subtle forms of plagiarism, including strong paraphrasing, sense-for-sense translations, or the reuse of non-textual content and ideas, remains a challenge. This book presents a novel approach to address this problem—analyzing non-textual elements in academic documents, such as citations, images, and mathematical content. The proposed detection techniques are validated in five evaluations using confirmed plagiarism cases and exploratory searches for new instances. The results show that non-textual elements contain much semantic information, are language-independent, and resilient to typical tactics for concealing plagiarism. Incorporating non-textual content analysis complements text-based detection approaches and increases the detection effectiveness, particularly for disguised forms of plagiarism. The book introduces the first integrated plagiarism detection system that combines citation, image, math, and text similarity analysis. Its user interface features visual aids that significantly reduce the time and effort users must invest in examining content similarity. About the author Norman Meuschke is a Senior Researcher for Information Retrieval and Natural Language Processing at the University of Göttingen, Germany.
Natural language processing (Computer science). --- Image processing—Digital techniques. --- Computer vision. --- Pattern recognition systems. --- Natural Language Processing (NLP). --- Computer Imaging, Vision, Pattern Recognition and Graphics. --- Automated Pattern Recognition. --- NLP (Computer science) --- Artificial intelligence --- Electronic data processing --- Human-computer interaction --- Semantic computing --- Pattern classification systems --- Pattern recognition computers --- Pattern perception --- Computer vision --- Machine vision --- Vision, Computer --- Image processing --- Pattern recognition systems --- Natural language processing (Computer science)
Choose an application
Die 7. Ausgabe der "Grundlagen der praktischen Information und Dokumentation" (Erstausgabe 1972) heißt jetzt: „Grundlagen der Informationswissenschaft". Der Bezug zur Praxis und zur Ausbildung bleibt erhalten, aber der neue Titel trägt dem Rechnung, dass die wissenschaftliche theoretische Absicherung für alle Bereiche von Wissen und Information, nicht nur in der Fachinformation, sondern auch in den Informationsdiensten des Internet immer wichtiger wird. Für die Grundlagen sind 73 Artikel in 6 Hauptkapiteln vorgesehen. Viele Themen werden zum ersten Mal behandelt, z.B. Information und Emotion, Informationelle Selbstbestimmung, Informationspathologien. Alle Beiträge sind neu verfasst. The seventh edition of the Principles of Practical Information and Documentation is now called: The Principles of Information Science. The new title does justice to the fact that there is an increasing need to theorize how we deal with knowledge and information in practice, training, and research; as well as the development of information skills, in particular in online information services. All articles in the volume have been rewritten.
Listing 1 - 2 of 2 |
Sort by
|