Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Choose an application
Ebema N.V. is een bedrijf dat uit prefabbeton materialen fabriceert. Hierbij gebruikt het bedrijf echter veel water bij het productieproces voor beton. Niet enkel bij het maken van beton maar ook bij de nabehandeling van hun stenen. Hierdoor is Ebema een groot verbruiker van water. Het doel van deze stage was om het project van het 0-lozerstatuut af te werken. Dit houdt in dat er geen enkel proceswater meer geloosd mag worden in de riolering of naar andere waterwegen. Hierdoor zal men dus het water allemaal willen gaan hergebruiken. Dit project was al voor een groot deel klaar. Mijn taak was om de laatste pijnpunten van dit project aan te pakken en een gepaste oplossing voor elk probleem te vinden. Dit kwam neer op nog 3 problemen: De hefttruck wasplaats, het labo en de mallen wasstraat. Voor elk project kwamen de zelfde stappen kijken. Het startte telkens met engineering werk. Dit hield in het probleem blootleggen. Voor elk probleem moest er een gepaste oplossing gevonden worden die paste in de vooruitstrevende visie van het bedrijf. Dan werd er van elk pijnpunt een PID schema gemaakt via E-plan om later te kunnen toevoegen aan het gehele overzicht van de huidige waterzuivering. Het project van het labo is tijdens deze stage echter gerealiseerd. Er moest een nieuwe elektrische kast ontworpen worden in E-plan voor de zuivering. Ook moest voor deze waterzuivering een PLC programma/regeling ontworpen worden via TIA PORTAL. Dit stageproject leverde voor Ebema enkele grote voordelen op. Op economisch vlak worden ze niet meer belast op hun afvalwater. Een ander voordeel is dat er nu meer ecologisch waterverbruik is.
Choose an application
Different processing methods are utilized in the production of titanium (Ti) parts. In recent years, additive manufacturing has gained a lot attention due to its inherent flexibility and freedom in design. Therefore, during the production of Ti parts the material is subjected to a broad range of cooling rates. During the cooling down phase, titanium will experience a solid-state phase transformation going from the β to α phase. The cooling rate will have an important impact on the nucleation and growth during this solid-state phase transformation and will greatly influence the final microstructure, and therefore the properties of the part. However, the relation between the cooling rate and the formation of the microstructure in pure Ti has not been clearly understood yet. In scope of this problem, a phase-field simulation model has been developed by Feyen and Verbeeck, which is able to simulate homogeneous nucleation and growth of the α phase in the parent β phase under constant cooling rate. This thesis aimed to validate and improve the existing model through simulations and experiments. The model was extended by redefining the temperature profile through heat equations, to include cooling based on convective heat transfer with the environment and latent heat production upon phase transformation. As a result, the rate of phase transformation was found to be controlled by the heat flux to the environment. Furthermore to improve the material-specific input parameters for the phase-field model, the interfacial energy and mobility were investigated through experiments. Differential thermal analysis (DTA) of extra pure Ti revealed the undercooling required for phase transformation to be very low. Therefore, the interfacial energy upon nucleation was determined to be lower than the one used in the model and close to zero, indicating a high degree of coherency of the α nucleus upon nucleation. Confocal scanning laser microscopy (CSLM) was used to observe in-situ the phase transformation and measure the interfacial velocity of the growing α phase. In this way, an estimation for the interfacial mobility was made which was found to be an order of magnitude larger than the one used for the model. Finally, Electron backscatter diffraction (EBSD) was performed on samples which were subjected to different heat treatments i.e., furnace cooling, air cooling and water quenching, to validate the simulated microstructures for different cooling rates. The improved model simulates larger grains, which is also closer to the grain size in the EBSD cross-sections, differing by only one order of magnitude, compared to provided model which differs by two order of magnitudes, for the air cooled and water quenched samples. A qualitative match of the grain size was obtained for the microstructure of furnace cooled sample.
Choose an application
Manufacturing safe and fast vaccines is crucial, as it prevents two to three millions deaths worldwide each year. Vaccine manufacturing involves complex quality testing which can take up to 70% of the production time. This thesis developed a discrete-event simulation model that replicates the workflow of a quality control laboratory of a vaccine manufacturer. The model was developed using data from both literature and semi-structured interviews with an industry expert. A base case was simulated and performance metrics such as total lead time, resource utilization rate and throughput rate were computed and analysed. Afterwards a sensitivity analysis was performed to gain more understanding in the impact different input parameters of the QC process have on these performance metrics. The results show that employee availability significantly influences the total lead time. For instance, a 30% reduction in available data reviewers could lead to a 45,97% increase in total lead time.
Listing 1 - 4 of 4 |
Sort by
|