Listing 1 - 3 of 3 |
Sort by
|
Choose an application
This monograph presents the development of novel model-based methodologies for engineering self-organized and self-assembled systems. The work bridges the gap between statistical mechanics and control theory by tackling a number of challenges for a class of distributed systems involving a specific type of constitutive components, namely referred to as Smart Minimal Particles. The results described in the volume are expected to lead to more robust, dependable, and inexpensive distributed systems such as those endowed with complex and advanced sensing, actuation, computation, and communication capabilities.
Engineering. --- Artificial intelligence. --- Robotics and Automation. --- Artificial Intelligence (incl. Robotics). --- Mechanical Engineering --- Engineering & Applied Sciences --- Mechanical Engineering - General --- AI (Artificial intelligence) --- Artificial thinking --- Electronic brains --- Intellectronics --- Intelligence, Artificial --- Intelligent machines --- Machine intelligence --- Thinking, Artificial --- Construction --- Robotics. --- Automation. --- Self-organizing systems. --- Learning systems (Automatic control) --- Self-optimizing systems --- Cybernetics --- Intellect --- Learning ability --- Synergetics --- Artificial Intelligence. --- Bionics --- Cognitive science --- Digital computer simulation --- Electronic data processing --- Logic machines --- Machine theory --- Self-organizing systems --- Simulation methods --- Fifth generation computers --- Neural computers --- Automatic factories --- Automatic production --- Computer control --- Engineering cybernetics --- Factories --- Industrial engineering --- Mechanization --- Assembly-line methods --- Automatic control --- Automatic machinery --- CAD/CAM systems --- Robotics --- Automation
Choose an application
This monograph presents the development of novel model-based methodologies for engineering self-organized and self-assembled systems. The work bridges the gap between statistical mechanics and control theory by tackling a number of challenges for a class of distributed systems involving a specific type of constitutive components, namely referred to as Smart Minimal Particles. The results described in the volume are expected to lead to more robust, dependable, and inexpensive distributed systems such as those endowed with complex and advanced sensing, actuation, computation, and communication capabilities.
Choose an application
Distributed robotics is a rapidly growing, interdisciplinary research area lying at the intersection of computer science, communication and control systems, and electrical and mechanical engineering. The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS) is to exchange and stimulate research ideas to realize advanced distributed robotic systems. This volume of proceedings includes 43 original contributions presented at the Tenth International Symposium on Distributed Autonomous Robotic Systems (DARS 2010), which was held in November 2010 at the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland. The selected papers in this volume are authored by leading researchers from Asia, Australia, Europa, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into four parts, each representing one critical and long-term research thrust in the multi-robot community: distributed sensing (Part I); localization, navigation, and formations (Part II); coordination algorithms and formal methods (Part III); modularity, distributed manipulation, and platforms (Part IV).
Listing 1 - 3 of 3 |
Sort by
|