Listing 1 - 6 of 6 |
Sort by
|
Choose an application
This book focuses on two specific areas related to fractional order systems – the realization of physical devices characterized by non-integer order impedance, usually called fractional-order elements (FOEs); and the characterization of vegetable tissues via electrical impedance spectroscopy (EIS) – and provides readers with new tools for designing new types of integrated circuits. The majority of the book addresses FOEs. The interest in these topics is related to the need to produce “analogue” electronic devices characterized by non-integer order impedance, and to the characterization of natural phenomena, which are systems with memory or aftereffects and for which the fractional-order calculus tool is the ideal choice for analysis. FOEs represent the building blocks for designing and realizing analogue integrated electronic circuits, which the authors believe hold the potential for a wealth of mass-market applications. The freedom to choose either an integer- or non-integer-order analogue integrator/derivator is a new one for electronic circuit designers. The book shows how specific non-integer-order impedance elements can be created using materials with specific structural properties. EIS measures the electrical impedance of a specimen across a given range of frequencies, producing a spectrum that represents the variation of the impedance versus frequency – a technique that has the advantage of avoiding aggressive examinations. Biological tissues are complex systems characterized by dynamic processes that occur at different lengths and time scales; this book proposes a model for vegetable tissues that describes the behavior of such materials by considering the interactions among various relaxing phenomena and memory effects.
Engineering. --- Information theory. --- Electronic circuits. --- Circuits and Systems. --- Information and Communication, Circuits. --- Electronic Circuits and Devices. --- Fractional calculus. --- Derivatives and integrals, Fractional --- Differentiation of arbitrary order, Integration and --- Differintegration, Generalized --- Fractional derivatives and integrals --- Generalized calculus --- Generalized differintegration --- Integrals, Fractional derivatives and --- Integration and differentiation of arbitrary order --- Calculus --- Systems engineering. --- Mathematics. --- Math --- Science --- Engineering systems --- System engineering --- Engineering --- Industrial engineering --- System analysis --- Design and construction --- Communication theory --- Communication --- Cybernetics --- Electron-tube circuits --- Electric circuits --- Electron tubes --- Electronics
Choose an application
This book focuses on two specific areas related to fractional order systems – the realization of physical devices characterized by non-integer order impedance, usually called fractional-order elements (FOEs); and the characterization of vegetable tissues via electrical impedance spectroscopy (EIS) – and provides readers with new tools for designing new types of integrated circuits. The majority of the book addresses FOEs. The interest in these topics is related to the need to produce “analogue” electronic devices characterized by non-integer order impedance, and to the characterization of natural phenomena, which are systems with memory or aftereffects and for which the fractional-order calculus tool is the ideal choice for analysis. FOEs represent the building blocks for designing and realizing analogue integrated electronic circuits, which the authors believe hold the potential for a wealth of mass-market applications. The freedom to choose either an integer- or non-integer-order analogue integrator/derivator is a new one for electronic circuit designers. The book shows how specific non-integer-order impedance elements can be created using materials with specific structural properties. EIS measures the electrical impedance of a specimen across a given range of frequencies, producing a spectrum that represents the variation of the impedance versus frequency – a technique that has the advantage of avoiding aggressive examinations. Biological tissues are complex systems characterized by dynamic processes that occur at different lengths and time scales; this book proposes a model for vegetable tissues that describes the behavior of such materials by considering the interactions among various relaxing phenomena and memory effects.
Mathematics --- Electrical engineering --- Applied physical engineering --- Information systems --- ICT (informatie- en communicatietechnieken) --- informatiesystemen --- wiskunde --- ingenieurswetenschappen --- elektrische circuits
Choose an application
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This seventh volume collects authoritative chapters covering several applications of fractional calculus in in engineering, life, and social sciences, including applications in biology and medicine, mechanics of complex media, economy, and electrical devices.
Fractional calculus. --- Derivatives and integrals, Fractional --- Differentiation of arbitrary order, Integration and --- Differintegration, Generalized --- Fractional derivatives and integrals --- Generalized calculus --- Generalized differintegration --- Integrals, Fractional derivatives and --- Integration and differentiation of arbitrary order --- Calculus
Choose an application
Choose an application
Choose an application
Listing 1 - 6 of 6 |
Sort by
|