Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
This is the second edition of a highly successful and well-respected textbook on the numerical techniques used to solve partial differential equations arising from mathematical models in science, engineering and other fields. The authors maintain an emphasis on finite difference methods for simple but representative examples of parabolic, hyperbolic and elliptic equations from the first edition. However this is augmented by new sections on finite volume methods, modified equation analysis, symplectic integration schemes, convection-diffusion problems, multigrid, and conjugate gradient methods; and several sections, including that on the energy method of analysis, have been extensively rewritten to reflect modern developments. Already an excellent choice for students and teachers in mathematics, engineering and computer science departments, the revised text brings the reader up-to-date with the latest theoretical and industrial developments.
519.63 --- 519.63 Numerical methods for solution of partial differential equations --- Numerical methods for solution of partial differential equations --- Partial differential equations: difference methods; elliptic equations; finite element methods; hyperbolic equations; method of lines; parabolic equations (Numerical analysis) --- 681.3 *G18 Partial differential equations: difference methods; elliptic equations; finite element methods; hyperbolic equations; method of lines; parabolic equations (Numerical analysis) --- Differential equations, Partial --- 519.65 --- 681.3 *G18 --- 519.65 Approximation. Interpolation --- Approximation. Interpolation --- Numerical analysis --- Numerical solutions --- Numerical solutions. --- Differential equations, Partial - Numerical solutions
Choose an application
Numerical analysis provides the theoretical foundation for the numerical algorithms we rely on to solve a multitude of computational problems in science. Based on a successful course at Oxford University, this book covers a wide range of such problems ranging from the approximation of functions and integrals to the approximate solution of algebraic, transcendental, differential and integral equations. Throughout the book, particular attention is paid to the essential qualities of a numerical algorithm - stability, accuracy, reliability and efficiency. The authors go further than simply providing recipes for solving computational problems. They carefully analyse the reasons why methods might fail to give accurate answers, or why one method might return an answer in seconds while another would take billions of years. This book is ideal as a text for students in the second year of a university mathematics course. It combines practicality regarding applications with consistently high standards of rigour.
Choose an application
This is the 2005 second edition of a highly successful and well-respected textbook on the numerical techniques used to solve partial differential equations arising from mathematical models in science, engineering and other fields. The authors maintain an emphasis on finite difference methods for simple but representative examples of parabolic, hyperbolic and elliptic equations from the first edition. However this is augmented by new sections on finite volume methods, modified equation analysis, symplectic integration schemes, convection-diffusion problems, multigrid, and conjugate gradient methods; and several sections, including that on the energy method of analysis, have been extensively rewritten to reflect modern developments. Already an excellent choice for students and teachers in mathematics, engineering and computer science departments, the revised text includes more latest theoretical and industrial developments.
Differential equations, Partial --- Numerical analysis --- Numerical solutions.
Listing 1 - 8 of 8 |
Sort by
|