Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Classical valuation theory has applications in number theory and class field theory as well as in algebraic geometry, e.g. in a divisor theory for curves. But the noncommutative equivalent is mainly applied to finite dimensional skewfields. Recently however, new types of algebras have become popular in modern algebra; Weyl algebras, deformed and quantized algebras, quantum groups and Hopf algebras, etc. The advantage of valuation theory in the commutative case is that it allows effective calculations, bringing the arithmetical properties of the ground field into the picture. This arithmetical nature is also present in the theory of maximal orders in central simple algebras. Firstly, we aim at uniting maximal orders, valuation rings, Dubrovin valuations, etc. in a common theory, the theory of primes of algebras. Secondly, we establish possible applications of the noncommutative arithmetics to interesting classes of algebras, including the extension of central valuations to nice classes of quantized algebras, the development of a theory of Hopf valuations on Hopf algebras and quantum groups, noncommutative valuations on the Weyl field and interesting rings of invariants and valuations of Gauss extensions.
Noncommutative rings --- Valuation theory --- Mathematics --- Physical Sciences & Mathematics --- Algebra --- Mathematical Theory --- Noncommutative rings. --- Valuation theory. --- Non-commutative rings --- Mathematics. --- Algebra. --- Algebraic geometry. --- Associative rings. --- Rings (Algebra). --- Geometry. --- Algebraic Geometry. --- Associative Rings and Algebras. --- Euclid's Elements --- Algebraic rings --- Ring theory --- Algebraic fields --- Rings (Algebra) --- Algebraic geometry --- Geometry --- Mathematical analysis --- Math --- Science --- Algebraic number theory --- Topological fields --- Associative rings --- Geometry, algebraic.
Choose an application
Algebra --- Geometry --- algebra --- landmeetkunde --- geometrie
Choose an application
Much progress has been made during the last decade on the subjects of non commutative valuation rings, and of semi-hereditary and Priifer orders in a simple Artinian ring which are considered, in a sense, as global theories of non-commu tative valuation rings. So it is worth to present a survey of the subjects in a self-contained way, which is the purpose of this book. Historically non-commutative valuation rings of division rings were first treat ed systematically in Schilling's Book [Sc], which are nowadays called invariant valuation rings, though invariant valuation rings can be traced back to Hasse's work in [Has]. Since then, various attempts have been made to study the ideal theory of orders in finite dimensional algebras over fields and to describe the Brauer groups of fields by usage of "valuations", "places", "preplaces", "value functions" and "pseudoplaces". In 1984, N. 1. Dubrovin defined non-commutative valuation rings of simple Artinian rings with notion of places in the category of simple Artinian rings and obtained significant results on non-commutative valuation rings (named Dubrovin valuation rings after him) which signify that these rings may be the correct def inition of valuation rings of simple Artinian rings. Dubrovin valuation rings of central simple algebras over fields are, however, not necessarily to be integral over their centers.
Ordered algebraic structures --- Noncommutative rings. --- Valuation theory. --- Associative rings. --- Rings (Algebra). --- Algebra. --- Ordered algebraic structures. --- Category theory (Mathematics). --- Homological algebra. --- Commutative algebra. --- Commutative rings. --- Field theory (Physics). --- Associative Rings and Algebras. --- Order, Lattices, Ordered Algebraic Structures. --- Category Theory, Homological Algebra. --- Commutative Rings and Algebras. --- Field Theory and Polynomials. --- Classical field theory --- Continuum physics --- Physics --- Continuum mechanics --- Rings (Algebra) --- Algebra --- Homological algebra --- Algebra, Abstract --- Homology theory --- Category theory (Mathematics) --- Algebra, Homological --- Algebra, Universal --- Group theory --- Logic, Symbolic and mathematical --- Topology --- Functor theory --- Algebraic structures, Ordered --- Structures, Ordered algebraic --- Mathematics --- Mathematical analysis --- Algebraic rings --- Ring theory --- Algebraic fields --- Non-commutative rings --- Associative rings --- Algebraic number theory --- Topological fields
Choose an application
Classical valuation theory has applications in number theory and class field theory as well as in algebraic geometry, e.g. in a divisor theory for curves. But the noncommutative equivalent is mainly applied to finite dimensional skewfields. Recently however, new types of algebras have become popular in modern algebra; Weyl algebras, deformed and quantized algebras, quantum groups and Hopf algebras, etc. The advantage of valuation theory in the commutative case is that it allows effective calculations, bringing the arithmetical properties of the ground field into the picture. This arithmetical nature is also present in the theory of maximal orders in central simple algebras. Firstly, we aim at uniting maximal orders, valuation rings, Dubrovin valuations, etc. in a common theory, the theory of primes of algebras. Secondly, we establish possible applications of the noncommutative arithmetics to interesting classes of algebras, including the extension of central valuations to nice classes of quantized algebras, the development of a theory of Hopf valuations on Hopf algebras and quantum groups, noncommutative valuations on the Weyl field and interesting rings of invariants and valuations of Gauss extensions.
Algebra --- Geometry --- algebra --- landmeetkunde --- geometrie
Choose an application
The selected papers in this volume cover all the most important areas of ring theory and module theory such as classical ring theory, representation theory, the theory of quantum groups, the theory of Hopf algebras, the theory of Lie algebras and Abelian group theory. The review articles, written by specialists, provide an excellent overview of the various areas of ring and module theory - ideal for researchers looking for a new or related field of study. Also included are original articles showing the trend of current research.
Rings (Algebra) --- Algebra. --- Mathematics --- Mathematical analysis
Choose an application
This volume consists of a collection of survey articles by invited speakers and original articles refereed by world experts that was presented at the fifth China-Japan-Korea International Symposium. The survey articles provide some ideas of the application as well as an excellent overview of the various areas in ring theory. The original articles exhibit new ideas, tools and techniques needed for successful research investigation in ring theory and show the trend of current research.
Choose an application
This volume showcases mostly the contributions presented at the International Conference in Algebra and Its Applications held at the Aligarh Muslim University, Aligarh, India during November 12-14, 2016. Refereed by renowned experts in the field, this wide-ranging collection of works presents the state of the art in the field of algebra and its applications covering topics such as derivations in rings, category theory, Baer module theory, coding theory, graph theory, semi-group theory, HNP rings, Leavitt path algebras, generalized matrix algebras, Nakayama conjecture, near ring theory and lattice theory. All of the contributing authors are leading international academicians and researchers in their respective fields. Contents On Structure of ∗-Prime Rings with Generalized Derivation A characterization of additive mappings in rings with involution| Skew constacyclic codes over Fq + vFq + v2Fq Generalized total graphs of commutative rings: A survey Differential conditions for which near-rings are commutative rings Generalized Skew Derivations satisfying the second Posner's theorem on Lie ideals Generalized Skew-Derivations on Lie Ideals in Prime Rings On generalized derivations and commutativity of prime rings with involution On (n, d)-Krull property in amalgamated algebra Pure ideals in ordered Γ-semigroups Projective ideals of differential polynomial rings over HNP rings Additive central m-power skew-commuting maps on semiprime rings A Note on CESS-Lattices Properties Inherited by Direct Sums of Copies of a Module Modules witnessing that a Leavitt path algebra is directly infinite Inductive Groupoids and Normal Categories of Regular Semigroups Actions of generalized derivations in Rings and Banach Algebras Proper Categories and Their Duals On Nakayama Conjecture and related conjectures-Review On construction of global actions for partial actions On 2-absorbing and Weakly 2-absorbing Ideals in Product Lattices Separability in algebra and category theory Annihilators of power values of generalized skew derivations on Lie ideals Generalized derivations on prime rings with involution
Choose an application
Listing 1 - 8 of 8 |
Sort by
|