Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Distributed robotics is a rapidly growing, interdisciplinary research area lying at the intersection of computer science, communication and control systems, and electrical and mechanical engineering. The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS) is to exchange and stimulate research ideas to realize advanced distributed robotic systems. This volume of proceedings includes 43 original contributions presented at the Tenth International Symposium on Distributed Autonomous Robotic Systems (DARS 2010), which was held in November 2010 at the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland. The selected papers in this volume are authored by leading researchers from Asia, Australia, Europa, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into four parts, each representing one critical and long-term research thrust in the multi-robot community: distributed sensing (Part I); localization, navigation, and formations (Part II); coordination algorithms and formal methods (Part III); modularity, distributed manipulation, and platforms (Part IV).
Autonomous robots --- Robots --- Mechanical Engineering --- Engineering & Applied Sciences --- Mechanical Engineering - General --- Programming --- Automata --- Automatons --- Autonomous robotic systems --- Engineering. --- Artificial intelligence. --- Robotics. --- Automation. --- Robotics and Automation. --- Artificial Intelligence (incl. Robotics). --- Automatic factories --- Automatic production --- Computer control --- Engineering cybernetics --- Factories --- Industrial engineering --- Mechanization --- Assembly-line methods --- Automatic control --- Automatic machinery --- CAD/CAM systems --- Robotics --- Automation --- Machine theory --- AI (Artificial intelligence) --- Artificial thinking --- Electronic brains --- Intellectronics --- Intelligence, Artificial --- Intelligent machines --- Machine intelligence --- Thinking, Artificial --- Bionics --- Cognitive science --- Digital computer simulation --- Electronic data processing --- Logic machines --- Self-organizing systems --- Simulation methods --- Fifth generation computers --- Neural computers --- Construction --- Industrial arts --- Technology --- Manipulators (Mechanism) --- Mecha (Vehicles) --- Artificial Intelligence.
Choose an application
Distributed robotics is an interdisciplinary and rapidly growing area, combining research in computer science, communication and control systems, and electrical and mechanical engineering. Distributed robotic systems can autonomously solve complex problems while operating in highly unstructured real-world environments. They are expected to play a major role in addressing future societal needs, for example, by improving environmental impact assessment, food supply, transportation, manufacturing, security, and emergency and rescue services. The goal of the International Symposium on Distributed Autonomous Robotic Systems (DARS) is to provide a forum for scientific advances in the theory and practice of distributed autonomous robotic systems. This volume of proceedings include 47 original contributions presented at the 13th International Symposium on Distributed Autonomous Robotic Systems (DARS 2016), which was held at the Natural History Museum in London, UK, from November 7th to 9th, 2016. The selected papers in this volume are authored by leading researchers from around the world, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into seven parts, representative of critical long-term and emerging research thrusts in the multi-robot community: Distributed Coverage and Exploration; Multi-Robot Control; Multi-Robot Estimation; Multi-Robot Planning; Modular Robots and Smart Materials; Swarm Robotics; and Multi-Robot Systems in Applications. .
Engineering. --- Artificial intelligence. --- Computational intelligence. --- Robotics. --- Automation. --- Robotics and Automation. --- Artificial Intelligence (incl. Robotics). --- Computational Intelligence. --- Automatic factories --- Automatic production --- Computer control --- Engineering cybernetics --- Factories --- Industrial engineering --- Mechanization --- Assembly-line methods --- Automatic control --- Automatic machinery --- CAD/CAM systems --- Robotics --- Automation --- Machine theory --- Intelligence, Computational --- Artificial intelligence --- Soft computing --- AI (Artificial intelligence) --- Artificial thinking --- Electronic brains --- Intellectronics --- Intelligence, Artificial --- Intelligent machines --- Machine intelligence --- Thinking, Artificial --- Bionics --- Cognitive science --- Digital computer simulation --- Electronic data processing --- Logic machines --- Self-organizing systems --- Simulation methods --- Fifth generation computers --- Neural computers --- Construction --- Industrial arts --- Technology --- Artificial Intelligence.
Choose an application
ANTS - The International Workshop on Ant Colony Optimization and Swarm Intelligence is now at its ?fth edition. The series started in 1998 with the - ganization of ANTS 1998. At that time the goal was to gather in a common meeting those researchers interested in ant colony optimization: more than 50 researchers from around the world joined for the ?rst time in Brussels, Belgium, to discuss ant colony optimization and swarm intelligence related research. A selectionofthebest paperspresentedatthe workshopwaspublished asa special issue of the Future Generation Computer Systems journal (Vol. 16, No. 8, 2000). Two years later, ANTS 2000, organized again in Brussels, attracted more than 70 participants. The 41 extended abstracts presented as talks or posters at the workshopwere collected in a booklet distributed to participants, and a selection of the best papers was published as a special section of the IEEE Transactions on Evolutionary Computation (Vol. 6, No. 4, 2002). After these ?rst two successful editions, it was decided to make of ANTS a seriesofbiannualeventswitho?cialworkshopproceedings.Thethirdandfourth editions were organized in September 2002 and September 2004, respectively. Proceedings were published by Springer within the Lecture Notes in Computer Science (LNCS) series. The proceedings of ANTS 2002, LNCS Volume 2463, contained 36 contri- tions: 17 full papers, 11 short papers, and 8 extended abstracts,selected out of a total of 52 submissions. Those of ANTS 2004, LNCS Volume 3172, contained 50 contributions:22 full papers, 19 shortpapers, and 9 extended abstracts,selected out of a total of 79 submissions.
Complex analysis --- Discrete mathematics --- Computer science --- Computer architecture. Operating systems --- Artificial intelligence. Robotics. Simulation. Graphics --- Computer. Automation --- discrete wiskunde --- complexe analyse (wiskunde) --- informatica --- KI (kunstmatige intelligentie) --- computernetwerken --- robots --- numerieke analyse
Choose an application
Complex analysis --- Discrete mathematics --- Computer science --- Computer architecture. Operating systems --- Artificial intelligence. Robotics. Simulation. Graphics --- Computer. Automation --- discrete wiskunde --- complexe analyse (wiskunde) --- informatica --- KI (kunstmatige intelligentie) --- computernetwerken --- robots --- numerieke analyse
Choose an application
Distributed robotics is an interdisciplinary and rapidly growing area, combining research in computer science, communication and control systems, and electrical and mechanical engineering. Distributed robotic systems can autonomously solve complex problems while operating in highly unstructured real-world environments. They are expected to play a major role in addressing future societal needs, for example, by improving environmental impact assessment, food supply, transportation, manufacturing, security, and emergency and rescue services. The goal of the International Symposium on Distributed Autonomous Robotic Systems (DARS) is to provide a forum for scientific advances in the theory and practice of distributed autonomous robotic systems. This volume of proceedings include 47 original contributions presented at the 13th International Symposium on Distributed Autonomous Robotic Systems (DARS 2016), which was held at the Natural History Museum in London, UK, from November 7th to 9th, 2016. The selected papers in this volume are authored by leading researchers from around the world, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into seven parts, representative of critical long-term and emerging research thrusts in the multi-robot community: Distributed Coverage and Exploration; Multi-Robot Control; Multi-Robot Estimation; Multi-Robot Planning; Modular Robots and Smart Materials; Swarm Robotics; and Multi-Robot Systems in Applications. .
Choose an application
Distributed robotics is a rapidly growing, interdisciplinary research area lying at the intersection of computer science, communication and control systems, and electrical and mechanical engineering. The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS) is to exchange and stimulate research ideas to realize advanced distributed robotic systems. This volume of proceedings includes 43 original contributions presented at the Tenth International Symposium on Distributed Autonomous Robotic Systems (DARS 2010), which was held in November 2010 at the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland. The selected papers in this volume are authored by leading researchers from Asia, Australia, Europa, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into four parts, each representing one critical and long-term research thrust in the multi-robot community: distributed sensing (Part I); localization, navigation, and formations (Part II); coordination algorithms and formal methods (Part III); modularity, distributed manipulation, and platforms (Part IV).
Listing 1 - 6 of 6 |
Sort by
|