Narrow your search

Library

KU Leuven (2)

VIVES (2)

AP (1)

KBR (1)

KDG (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

More...

Resource type

dissertation (2)

book (1)

digital (1)


Language

English (3)

Dutch (1)


Year
From To Submit

2013 (2)

2012 (1)

2005 (1)

Listing 1 - 4 of 4
Sort by

Book
Analog IC reliability in nanometer CMOS
Authors: ---
ISBN: 1489986308 1461461626 1461461634 1299197396 Year: 2013 Publisher: New York, NY : Springer Science,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on modeling, simulation and analysis of analog circuit aging. First, all important nanometer CMOS physical effects resulting in circuit unreliability are reviewed. Then, transistor aging compact models for circuit simulation are discussed and several methods for efficient circuit reliability simulation are explained and compared. Ultimately, the impact of transistor aging on analog circuits is studied. Aging-resilient and aging-immune circuits are identified and the impact of technology scaling is discussed.   The models and simulation techniques described in the book are intended as an aid for device engineers, circuit designers and the EDA community to understand and to mitigate the impact of aging effects on nanometer CMOS ICs.   ·         Enables readers to understand long-term reliability of an integrated circuit; ·         Reviews CMOS unreliability effects, with focus on those that will emerge in future CMOS nodes; ·         Provides overview of models for key aging effects, as well as compact models that can be included in a circuit simulator, with model parameters for advanced CMOS technology; ·         Describes existing reliability simulators, along with techniques to analyze the impact of process variations and aging on an arbitrary analog circuit.


Digital
Analog IC Reliability in Nanometer CMOS
Authors: ---
ISBN: 9781461461630 Year: 2013 Publisher: New York, NY Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on modeling, simulation and analysis of analog circuit aging. First, all important nanometer CMOS physical effects resulting in circuit unreliability are reviewed. Then, transistor aging compact models for circuit simulation are discussed and several methods for efficient circuit reliability simulation are explained and compared. Ultimately, the impact of transistor aging on analog circuits is studied. Aging-resilient and aging-immune circuits are identified and the impact of technology scaling is discussed.   The models and simulation techniques described in the book are intended as an aid for device engineers, circuit designers and the EDA community to understand and to mitigate the impact of aging effects on nanometer CMOS ICs.   ·         Enables readers to understand long-term reliability of an integrated circuit; ·         Reviews CMOS unreliability effects, with focus on those that will emerge in future CMOS nodes; ·         Provides overview of models for key aging effects, as well as compact models that can be included in a circuit simulator, with model parameters for advanced CMOS technology; ·         Describes existing reliability simulators, along with techniques to analyze the impact of process variations and aging on an arbitrary analog circuit.


Dissertation
Analog IC reliability in nanometer CMOS : transistor modeling and circuit simulation
Authors: ---
ISBN: 9789460185786 Year: 2012 Publisher: Leuven Katholieke Universiteit Leuven

Loading...
Export citation

Choose an application

Bookmark

Abstract

Today, micro-electronic circuits are undeniably and ubiquitously present in our society. Transportation vehicles such as cars, trains, buses and airplanes make abundant use of electronic circuits to reduce energy consumption and emission of greenhouse gasses and to increase passenger safety and travel comfort. Other products using electronic circuits are smartphones, tablet PCs, game consoles, household appliances, satellites, base stations, servers, etc. Each of these applications is becoming increasingly more complex to build. At the same time, the quality and reliability requirements for electronic circuits are more demanding than ever.To guarantee a high production yield and a sufficient circuit lifetime, possible hazards and failure effects have to be considered throughout the entire design flow. Such a flow includes the initial concept, the design itself, the testing of the prototype circuit and finally the production process. The majority of integrated circuits manufactured today is processed in a complementary metal-oxide semiconductor (CMOS) technology. To reduce cost and to increase performance, the dimensions of all circuit components are shrinked with each new technology node. Associated with this technology scaling are the atomistic size of modern transistors, an increase of the gate-oxide electric field and the introduction of new gate and channel materials. The combination of these elements results in an emerging reliability problem for advanced nanometer CMOS technologies. Transistor wearout manifests itself as a gradual and time-dependent shift of circuit characteristics which can result in circuit failure. Especially analog circuits, which are typically used as an interface between the real world and a digital backend, can be very sensitive to such small circuit parameter variations.This PhD work focuses on the simulation and analysis of analog circuit reliability. The models and simulation techniques proposed in this dissertation are aimed to serve as an aid for circuit designers to better understand the impact of aging effects on their circuits and to enable the development of failure-resilient design solutions. In a first part of the work, an overview of all relevant nanometer CMOS unreliability effects is given and transistor compact models for the most important aging effects are proposed. A distinction between spatial unreliability effects, resulting from process variations, and temperoral unreliability effects, which are time-dependent, can be made. The latter can again be divided into transient effects such as noise and electromagnetic interference, and aging effects such as breakdown, bias temperature instability and hot carrier injection. This work primarily concentrates on the aging effects. To enable efficient and accurate circuit lifetime simulations, transistor compact models for each aging effect are proposed. These models include the most important circuit-related stress parameters such as voltages, transistor dimensions and temperature. Important effects such as partial recovery ofthetransistor damage when the stress voltage is reduced, are also supported. Each model is validated with measurements. Also, models for stochastic aging effects in sub-45nm CMOS, whichresult in time-dependent transistor mismatch, are discussed. A second part of the thesis focuses on the development of efficient simulation methods to analyze the impact of transistor aging on an entire circuit. Existing reliability simulators, published in literature or commercially available, still suffer from a lot of deficiencies. Often, these tools do not support all unreliability effects and especially the impact of process variations and stochastic aging effects is in most cases not included. The tool set presented in this work aims to solve these problems, while still limiting the computational effort. The proposed simulator includes support for all important deterministic and stochastic aging effects. Further, the interaction between process variations and aging effects can be analyzed and visualized. In addition to a visualization of the time-dependent performance shift of the circuit under test, reliability weak spots can be detected. This enables a designer to search for dedicated solutions in case of a reliability problem. To limit the simulation time, the simulator uses a response surface method which models the time-dependent circuit performance based on only a limited set of SPICE-based reliability simulations. Finally, a hierarchical simulation framework based on an adaptive sample selection algorithm and a non-linear symbolic regression algorithm enables the reliability simulation of large analog circuits within a reasonable time frame. Each part of the simulation framework is demonstrated on an example circuit. The last part of this work applies the proposed reliability compact models and simulation methods to a set of commonly used analog circuits. Factors that determine the circuit lifetime are explored and illustrated with examples. Further, a design for reliability flow is demonstrated on an example IDAC circuit resulting in the design of a reliable circuit with minimum guardbanding. Finally, the lifetime of small- to medium-sized digital circuits is investigated. Although the methods proposed in this work are primarily intended for analog circuits, they are also applicable to small- and medium-sized digital circuits when these are defined as a SPICE netlist. The models and simulation techniques developed in this work are intended as a first step towards understanding the impact of transistor aging on analog integrated circuits. Eventually, this understanding can help designers in designing guaranteed reliable and robust circuits in future CMOS process nodes


Dissertation
Ontwerp van een OPB-wishbonebrug Implementatie in een Virtex-II Pro-FPGA
Authors: --- ---
Year: 2005 Publisher: Oostende Katholieke Hogeschool Brugge-Oostende

Loading...
Export citation

Choose an application

Bookmark

Abstract

Embedded systemen worden in moderne elektronische apparaten steeds meer gebruikt. Door het gebruik van geïntegreerde processoren in FPGA's is het mogelijk om een volledig ontwerp te maken in relatief korte tijd en met beperkte kosten. Omdat het onmogelijk is om "from scratch" een embedded systeem te ontwikkelen, hangt het ontwerp sterk af van de aanwezige, integreerbare bouwstenen. Deze bouwstenen (IP-cores) zijn voor niet-commerciële organisaties zoals scholen en onderzoekscentra echter vrij duur. De oplossing hiervoor is een soort opensource-hardware. IMEC beschikt over een ontwikkelingsbord van Xilinx, dat een FPGA-core bevat met geïntegreerde PowerPC. De processor staat via een snel CoreConnect-bussysteem in verbinding met de rest van het systeem. Eén van de bussen van het CoreConnect-systeem is de OPB. Deze bus is echter niet verenigbaar met vrij verkrijgbare IP-cores. Een groot deel van deze cores kunnen wel aangesloten worden op een andere, vrije busstandaard, de wishbonebus. Daarom zou het een oplossing zijn, mocht er een brug ontwikkeld worden die de OPB met de wishbonebus verbindt. De bedoeling van dit eindwerk is een brug te ontwerpen tussen de wishbonebus en de OPB, die datatransport in beide richtingen toelaat. De brug moet in VHDL ontwikkeld worden en niet alleen alle functionaliteit van beide bussystemen ondersteunen, maar ook functioneren wanneer de klokfrequenties van beide bussen totaal verschillen. Daartoe moeten signalen gesynchroniseerd worden om van het ene naar het andere klokdomein over te gaan. Het resultaat van de thesis is een brug die voldoet aan alle vooropgestelde eisen en zo is ontworpen dat deze in alle omstandigheden zo goed mogelijk presteert. Het is immers de bedoeling dat de brug de signalen met zo weinig mogelijk vertraging doorstuurt. Met behulp van FIFO's, die hardwarematig op de FPGA aanwezig zijn, kunnen sequentiële transfers heel snel verwerkt worden. Tenslotte werd een testsysteem ontwikkeld dat met behulp va...

Keywords

Listing 1 - 4 of 4
Sort by