Listing 1 - 9 of 9 |
Sort by
|
Choose an application
Harmonic analysis. Fourier analysis --- Numerical analysis --- Mathematics --- Computer science --- Fourieranalyse --- functies (wiskunde) --- informatica --- wiskunde --- numerieke analyse
Choose an application
Special functions and orthogonal polynomials in particular have been around for centuries. Can you imagine mathematics without trigonometric functions, the exponential function or polynomials? In the twentieth century the emphasis was on special functions satisfying linear differential equations, but this has now been extended to difference equations, partial differential equations and non-linear differential equations. The present set of lecture notes containes seven chapters about the current state of orthogonal polynomials and special functions and gives a view on open problems and future directions. The topics are: computational methods and software for quadrature and approximation, equilibrium problems in logarithmic potential theory, discrete orthogonal polynomials and convergence of Krylov subspace methods in numerical linear algebra, orthogonal rational functions and matrix orthogonal rational functions, orthogonal polynomials in several variables (Jack polynomials) and separation of variables, a classification of finite families of orthogonal polynomials in Askey’s scheme using Leonard pairs, and non-linear special functions associated with the Painlevé equations.
Orthogonal polynomials. --- Functions, Special. --- Polynômes orthogonaux --- Fonctions spéciales --- Orthogonal polynomials --- Functions, Special --- Operations Research --- Mathematical Theory --- Civil & Environmental Engineering --- Mathematics --- Engineering & Applied Sciences --- Physical Sciences & Mathematics --- 517.518.8 --- 517.58 --- Approximation of functions by polynomials and their generalizations --- Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials. --- 517.58 Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials. --- 517.518.8 Approximation of functions by polynomials and their generalizations --- Special functions --- Mathematics. --- Approximation theory. --- Fourier analysis. --- Special functions. --- Numerical analysis. --- Approximations and Expansions. --- Special Functions. --- Numerical Analysis. --- Fourier Analysis. --- Fourier analysis --- Functions, Orthogonal --- Polynomials --- Mathematical analysis --- Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials --- Analysis, Fourier --- Theory of approximation --- Functional analysis --- Functions --- Chebyshev systems --- Math --- Science --- Functions, special.
Choose an application
The present volume contains the Proceedings of the Seventh Iberoamerican Workshop in Orthogonal Polynomials and Applications (EIBPOA, which stands for Encuentros Iberoamericanos de Polinomios Ortogonales y Aplicaciones, in Spanish), held at the Universidad Carlos III de Madrid, Leganés, Spain, from July 3 to July 6, 2018. These meetings were mainly focused to encourage research in the fields of approximation theory, special functions, orthogonal polynomials and their applications among graduate students as well as young researchers from Latin America, Spain and Portugal. The presentation of the state of the art as well as some recent trends constitute the aim of the lectures delivered in the EIBPOA by worldwide recognized researchers in the above fields. In this volume, several topics on the theory of polynomials orthogonal with respect to different inner products are analyzed, both from an introductory point of view for a wide spectrum of readers without an expertise in the area, as well as the emphasis on their applications in topics as integrable systems, random matrices, numerical methods in differential and partial differential equations, coding theory, and signal theory, among others.
Mathematical analysis. --- Analysis (Mathematics). --- Special functions. --- Difference equations. --- Functional equations. --- Approximation theory. --- Functions of complex variables. --- Fourier analysis. --- Analysis. --- Special Functions. --- Difference and Functional Equations. --- Approximations and Expansions. --- Functions of a Complex Variable. --- Fourier Analysis. --- Analysis, Fourier --- Mathematical analysis --- Complex variables --- Elliptic functions --- Functions of real variables --- Theory of approximation --- Functional analysis --- Functions --- Polynomials --- Chebyshev systems --- Equations, Functional --- Calculus of differences --- Differences, Calculus of --- Equations, Difference --- Special functions --- 517.1 Mathematical analysis --- Orthogonal polynomials --- Fourier analysis --- Functions, Orthogonal
Choose an application
Choose an application
The present volume contains the Proceedings of the Seventh Iberoamerican Workshop in Orthogonal Polynomials and Applications (EIBPOA, which stands for Encuentros Iberoamericanos de Polinomios Ortogonales y Aplicaciones, in Spanish), held at the Universidad Carlos III de Madrid, Leganés, Spain, from July 3 to July 6, 2018. These meetings were mainly focused to encourage research in the fields of approximation theory, special functions, orthogonal polynomials and their applications among graduate students as well as young researchers from Latin America, Spain and Portugal. The presentation of the state of the art as well as some recent trends constitute the aim of the lectures delivered in the EIBPOA by worldwide recognized researchers in the above fields. In this volume, several topics on the theory of polynomials orthogonal with respect to different inner products are analyzed, both from an introductory point of view for a wide spectrum of readers without an expertise in the area, as well as the emphasis on their applications in topics as integrable systems, random matrices, numerical methods in differential and partial differential equations, coding theory, and signal theory, among others.
Algebraic geometry --- Functional analysis --- Harmonic analysis. Fourier analysis --- Differential equations --- Mathematical analysis --- Numerical approximation theory --- Mathematics --- Computer science --- Fourieranalyse --- differentiaalvergelijkingen --- analyse (wiskunde) --- complexe veranderlijken --- functies (wiskunde) --- informatica --- mathematische modellen --- wiskunde
Choose an application
Special functions and orthogonal polynomials in particular have been around for centuries. Can you imagine mathematics without trigonometric functions, the exponential function or polynomials? In the twentieth century the emphasis was on special functions satisfying linear differential equations, but this has now been extended to difference equations, partial differential equations and non-linear differential equations. The present set of lecture notes containes seven chapters about the current state of orthogonal polynomials and special functions and gives a view on open problems and future directions. The topics are: computational methods and software for quadrature and approximation, equilibrium problems in logarithmic potential theory, discrete orthogonal polynomials and convergence of Krylov subspace methods in numerical linear algebra, orthogonal rational functions and matrix orthogonal rational functions, orthogonal polynomials in several variables (Jack polynomials) and separation of variables, a classification of finite families of orthogonal polynomials in Askey's scheme using Leonard pairs, and non-linear special functions associated with the Painlevé equations.
Harmonic analysis. Fourier analysis --- Numerical analysis --- Mathematics --- Computer science --- Fourieranalyse --- functies (wiskunde) --- informatica --- wiskunde --- numerieke analyse
Choose an application
Choose an application
Choose an application
Algebraic geometry --- Functional analysis --- Harmonic analysis. Fourier analysis --- Differential equations --- Mathematical analysis --- Numerical approximation theory --- Mathematics --- Computer science --- Fourieranalyse --- differentiaalvergelijkingen --- analyse (wiskunde) --- complexe veranderlijken --- functies (wiskunde) --- informatica --- mathematische modellen --- wiskunde
Listing 1 - 9 of 9 |
Sort by
|