Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

Vlaams Parlement (2)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2022 (3)

2021 (2)

Listing 1 - 5 of 5
Sort by

Book
Effects of Diagenetic Alterations on Hydrocarbon Reservoirs and Water Aquifers
Author:
ISBN: 3036555455 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Effects of Diagenetic Alterations on Hydrocarbon Reservoirs and Water Aquifers
Author:
Year: 2022 Publisher: Basel : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Reservoir quality (porosity and permeability) and heterogeneity in carbonate and siliciclastic hydrocarbon reservoirs and groundwater aquifers are significantly constrained by diagenetic processes, such as biological, chemical, biochemical, and mechanical changes, that occur in sediments subsequent to deposition and prior to low-grade metamorphism. Diagenesis, which has a variable but overall important impact on reservoir quality evolution, is controlled by several inter-related parameters. These parameters include the depositional composition of the sediments, depositional facies, sequence stratigraphy, pore water chemistry, burial history and tectonic setting of the basin, and paleoclimatic conditions.Carbonate and siliciclastic sediments often undergo multiple stages of diagenesis, which are related to complex patterns of burial-thermal history (subsidence and uplift) that are controlled by the tectonic evolution of the basin. Tectonic evolution of the basin is controlled by the position of the basin with respect to the type and activity along the plate boundaries. The episodes of burial and uplift may result in profound modifications in the pressure-temperature regimes and in the extent of mineral-water interaction, and hence in various phases of compaction, as well as mineral dissolution, recrystallization, transformation, and cementation. Diagenesis impacts reservoir quality in the following ways: (i) destruction by mechanical compaction and extensive cementation, (ii) preservation by prevention of mechanical and chemical compaction, or (iii) generation by dissolution of labile framework grains and intergranular cements.


Book
Effects of Diagenetic Alterations on Hydrocarbon Reservoirs and Water Aquifers
Author:
Year: 2022 Publisher: Basel : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Reservoir quality (porosity and permeability) and heterogeneity in carbonate and siliciclastic hydrocarbon reservoirs and groundwater aquifers are significantly constrained by diagenetic processes, such as biological, chemical, biochemical, and mechanical changes, that occur in sediments subsequent to deposition and prior to low-grade metamorphism. Diagenesis, which has a variable but overall important impact on reservoir quality evolution, is controlled by several inter-related parameters. These parameters include the depositional composition of the sediments, depositional facies, sequence stratigraphy, pore water chemistry, burial history and tectonic setting of the basin, and paleoclimatic conditions.Carbonate and siliciclastic sediments often undergo multiple stages of diagenesis, which are related to complex patterns of burial-thermal history (subsidence and uplift) that are controlled by the tectonic evolution of the basin. Tectonic evolution of the basin is controlled by the position of the basin with respect to the type and activity along the plate boundaries. The episodes of burial and uplift may result in profound modifications in the pressure-temperature regimes and in the extent of mineral-water interaction, and hence in various phases of compaction, as well as mineral dissolution, recrystallization, transformation, and cementation. Diagenesis impacts reservoir quality in the following ways: (i) destruction by mechanical compaction and extensive cementation, (ii) preservation by prevention of mechanical and chemical compaction, or (iii) generation by dissolution of labile framework grains and intergranular cements.


Book
Chemical, Mineralogical and Isotopic Studies of Diagenesis of Carbonate and Clastic Sediments
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Diagenesis of carbonates and clastic sediments encompasses the biochemical, mechanical, and chemical changes that occur in sediments subsequent to deposition and prior to low-grade metamorphism. These parameters which, to a large extent, control diagenesis in carbonates and clastic sediments include primary composition of the sediments, depositional facies, pore water chemistry, burial–thermal and tectonic evolution of the basin, and paleo-climatic conditions. Diagenetic processes involve widespread chemical, mineralogical, and isotopic modifications affected by the original mineralogy of carbonate and clastic sediments. These diagenetic alterations will impose a major control on porosity and permeability and hence on hydrocarbon reservoirs, water aquifers, and the presence of other important economic minerals. In this Special Issue, we have submissions focusing on understanding the interplay between the mineralogical and chemical changes in carbonates and clastic sediments and the diagenetic processes, fluid flow, tectonics, and mineral reactions at variable scales and environments from a verity of sedimentary basins. Quantitative analyses of diagenetic reactions in these sediments using a variety of techniques are essential for understanding the pathways of these reactions in different diagenetic environments.


Book
Chemical, Mineralogical and Isotopic Studies of Diagenesis of Carbonate and Clastic Sediments
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Diagenesis of carbonates and clastic sediments encompasses the biochemical, mechanical, and chemical changes that occur in sediments subsequent to deposition and prior to low-grade metamorphism. These parameters which, to a large extent, control diagenesis in carbonates and clastic sediments include primary composition of the sediments, depositional facies, pore water chemistry, burial–thermal and tectonic evolution of the basin, and paleo-climatic conditions. Diagenetic processes involve widespread chemical, mineralogical, and isotopic modifications affected by the original mineralogy of carbonate and clastic sediments. These diagenetic alterations will impose a major control on porosity and permeability and hence on hydrocarbon reservoirs, water aquifers, and the presence of other important economic minerals. In this Special Issue, we have submissions focusing on understanding the interplay between the mineralogical and chemical changes in carbonates and clastic sediments and the diagenetic processes, fluid flow, tectonics, and mineral reactions at variable scales and environments from a verity of sedimentary basins. Quantitative analyses of diagenetic reactions in these sediments using a variety of techniques are essential for understanding the pathways of these reactions in different diagenetic environments.

Keywords

Research & information: general --- diagenesis --- authigenic minerals --- reservoir quality --- Eboliang --- Qaidam Basin --- clay minerals --- major elements --- trace elements --- sedimentary environment --- diagenetic Environment --- silicification --- meteoric diagenesis --- fractures --- deltaic sequence --- karst --- glacial period --- dolomitization --- Huron Domain --- Silurian --- Devonian --- fluid composition --- Michigan Basin --- bipyramidal quartz --- pseudohexagonal aragonite --- Iberian Range --- Upper Triassic --- hydrothermal circulation --- carbonate reservoirs --- sedimentation --- porosity --- platform carbonates --- REE + Y chemistry --- paleoceanographic proxies --- diagenetic proxies --- NE Turkey --- hydrothermal dolomite --- diagenetic settings --- optical petrography --- geochemical --- Triassic-Jurassic successions --- Provençal Domain --- diagenesis --- authigenic minerals --- reservoir quality --- Eboliang --- Qaidam Basin --- clay minerals --- major elements --- trace elements --- sedimentary environment --- diagenetic Environment --- silicification --- meteoric diagenesis --- fractures --- deltaic sequence --- karst --- glacial period --- dolomitization --- Huron Domain --- Silurian --- Devonian --- fluid composition --- Michigan Basin --- bipyramidal quartz --- pseudohexagonal aragonite --- Iberian Range --- Upper Triassic --- hydrothermal circulation --- carbonate reservoirs --- sedimentation --- porosity --- platform carbonates --- REE + Y chemistry --- paleoceanographic proxies --- diagenetic proxies --- NE Turkey --- hydrothermal dolomite --- diagenetic settings --- optical petrography --- geochemical --- Triassic-Jurassic successions --- Provençal Domain

Listing 1 - 5 of 5
Sort by