Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

ULiège (1)

VIVES (1)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2022 (3)

Listing 1 - 3 of 3
Sort by

Book
Hybrid Systems for Marine Energy Harvesting
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Technologies to harvest marine renewable energies (MREs) are at a pre-commercial stage, and significant R&D progress is still required in order to improve their competitiveness. Therefore, hybridization presents a significant potential, as it fosters synergies among the different harvesting technologies and resources. In the scope of this Special Issue, hybridization is understood in three different manners: (i) combination of technologies to harvest different MREs (e.g., wave energy converters combined with wind turbines); (ii) combination of different working principles to harvest the same resource (e.g., oscillating water column with an overtopping device to harvest wave energy); or (iii) integration of harvesting technologies in multifunctional platforms and structures (e.g., integration of wave energy converters in breakwaters). This Special Issue presents cutting-edge research on the development and testing of hybrid technologies for harvesting MREs and intends to inform interested readers on the most recent advances in this key topic.


Book
Hybrid Systems for Marine Energy Harvesting
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Technologies to harvest marine renewable energies (MREs) are at a pre-commercial stage, and significant R&D progress is still required in order to improve their competitiveness. Therefore, hybridization presents a significant potential, as it fosters synergies among the different harvesting technologies and resources. In the scope of this Special Issue, hybridization is understood in three different manners: (i) combination of technologies to harvest different MREs (e.g., wave energy converters combined with wind turbines); (ii) combination of different working principles to harvest the same resource (e.g., oscillating water column with an overtopping device to harvest wave energy); or (iii) integration of harvesting technologies in multifunctional platforms and structures (e.g., integration of wave energy converters in breakwaters). This Special Issue presents cutting-edge research on the development and testing of hybrid technologies for harvesting MREs and intends to inform interested readers on the most recent advances in this key topic.


Book
Hybrid Systems for Marine Energy Harvesting
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Technologies to harvest marine renewable energies (MREs) are at a pre-commercial stage, and significant R&D progress is still required in order to improve their competitiveness. Therefore, hybridization presents a significant potential, as it fosters synergies among the different harvesting technologies and resources. In the scope of this Special Issue, hybridization is understood in three different manners: (i) combination of technologies to harvest different MREs (e.g., wave energy converters combined with wind turbines); (ii) combination of different working principles to harvest the same resource (e.g., oscillating water column with an overtopping device to harvest wave energy); or (iii) integration of harvesting technologies in multifunctional platforms and structures (e.g., integration of wave energy converters in breakwaters). This Special Issue presents cutting-edge research on the development and testing of hybrid technologies for harvesting MREs and intends to inform interested readers on the most recent advances in this key topic.

Keywords

Technology: general issues --- History of engineering & technology --- vertical axisymmetric floaters --- arbitrary shape --- breakwater --- diffraction and radiation problem --- hydrodynamic characteristics --- added mass --- damping coefficient --- marine renewable energy --- wind energy --- solar energy --- resource assessment --- hybrid energy systems --- power take-off damping --- wave power device --- experimental testing --- PTO simulator --- uncertainty analysis --- wave energy testing --- experimental set-up --- calibration --- Computational Fluid Dynamics (CFD) modelling --- physical model testing --- Hybrid-Wave Energy Converter (HWEC) --- composite modelling approach --- Oscillating Water Column (OWC) --- Overtopping Device (OTD) --- multi-purpose breakwater --- wave power --- oscillating buoy --- power generation performance --- standing waves --- experimental research --- physical modelling --- wave energy --- breakwaters --- safety --- overtopping --- stability --- offshore wind energy --- CECO --- WindFloat Atlantic --- co-located wind-wave farm --- vertical axisymmetric floaters --- arbitrary shape --- breakwater --- diffraction and radiation problem --- hydrodynamic characteristics --- added mass --- damping coefficient --- marine renewable energy --- wind energy --- solar energy --- resource assessment --- hybrid energy systems --- power take-off damping --- wave power device --- experimental testing --- PTO simulator --- uncertainty analysis --- wave energy testing --- experimental set-up --- calibration --- Computational Fluid Dynamics (CFD) modelling --- physical model testing --- Hybrid-Wave Energy Converter (HWEC) --- composite modelling approach --- Oscillating Water Column (OWC) --- Overtopping Device (OTD) --- multi-purpose breakwater --- wave power --- oscillating buoy --- power generation performance --- standing waves --- experimental research --- physical modelling --- wave energy --- breakwaters --- safety --- overtopping --- stability --- offshore wind energy --- CECO --- WindFloat Atlantic --- co-located wind-wave farm

Listing 1 - 3 of 3
Sort by