Listing 1 - 5 of 5 |
Sort by
|
Choose an application
This book presents a comprehensive assessment of clastic sedimentology and its application to reservoir geology. It covers the theoretical foundations of the topic and its use for scientists as well as professionals in the field. Further, it addresses all aspects of reservoir sedimentology, clastic sequence stratigraphy, sedimentation, reservoir diagenesis and heterogeneity, as well as depositional systems (alluvial, fluvial, lacustrine, delta, sandy coast, neritic, deep-water) in detail. The research team responsible for this book has been investigating clastic sedimentology for more than three decades and consists of highly published and cited authors. The Chinese edition of this book has been a great success, and is popular among sedimentologists and petroleum geologists alike.
Sedimentology. --- Sedimentary structures. --- Earth sciences. --- Fossil fuels. --- Geotechnical engineering. --- Geomorphology. --- Earth Sciences. --- Fossil Fuels (incl. Carbon Capture). --- Geotechnical Engineering & Applied Earth Sciences. --- Petrology --- Structures, Sedimentary --- Sedimentology --- Engineering, Geotechnical --- Geotechnics --- Geotechnology --- Engineering geology --- Geomorphic geology --- Physiography --- Physical geography --- Landforms --- Fossil energy --- Fuel --- Energy minerals
Choose an application
This book presents a comprehensive assessment of clastic sedimentology and its application to reservoir geology. It covers the theoretical foundations of the topic and its use for scientists as well as professionals in the field. Further, it addresses all aspects of reservoir sedimentology, clastic sequence stratigraphy, sedimentation, reservoir diagenesis and heterogeneity, as well as depositional systems (alluvial, fluvial, lacustrine, delta, sandy coast, neritic, deep-water) in detail. The research team responsible for this book has been investigating clastic sedimentology for more than three decades and consists of highly published and cited authors. The Chinese edition of this book has been a great success, and is popular among sedimentologists and petroleum geologists alike.
Geology. Earth sciences --- Mining industry --- Fuels --- sedimenten --- sedimentatie --- mijnbouw --- geomorfologie --- fossiele brandstoffen
Choose an application
Cancer is a leading cause of death worldwide, claiming millions of lives each year. Cancer biology is an essential research field to understand how cancer develops, evolves, and responds to therapy. By taking advantage of a series of “omics” technologies (e.g., genomics, transcriptomics, and epigenomics), computational methods in bioinformatics and machine learning can help scientists and researchers to decipher the complexity of cancer heterogeneity, tumorigenesis, and anticancer drug discovery. Particularly, bioinformatics enables the systematic interrogation and analysis of cancer from various perspectives, including genetics, epigenetics, signaling networks, cellular behavior, clinical manifestation, and epidemiology. Moreover, thanks to the influx of next-generation sequencing (NGS) data in the postgenomic era and multiple landmark cancer-focused projects, such as The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), machine learning has a uniquely advantageous role in boosting data-driven cancer research and unraveling novel methods for the prognosis, prediction, and treatment of cancer.
Research & information: general --- Biology, life sciences --- tumor mutational burden --- DNA damage repair genes --- immunotherapy --- biomarker --- biomedical informatics --- breast cancer --- estrogen receptor alpha --- persistent organic pollutants --- drug-drug interaction networks --- molecular docking --- NGS --- ctDNA --- VAF --- liquid biopsy --- filtering --- variant calling --- DEGs --- diagnosis --- ovarian cancer --- PUS7 --- RMGs --- CPA4 --- bladder urothelial carcinoma --- immune cells --- T cell exhaustion --- checkpoint --- architectural distortion --- image processing --- depth-wise convolutional neural network --- mammography --- bladder cancer --- Annexin family --- survival analysis --- prognostic signature --- therapeutic target --- R Shiny application --- RNA-seq --- proteomics --- multi-omics analysis --- T-cell acute lymphoblastic leukemia --- CCLE --- sitagliptin --- thyroid cancer (THCA) --- papillary thyroid cancer (PTCa) --- thyroidectomy --- metastasis --- drug resistance --- n/a --- biomarker identification --- transcriptomics --- machine learning --- prediction --- variable selection --- major histocompatibility complex --- bidirectional long short-term memory neural network --- deep learning --- cancer --- incidence --- mortality --- modeling --- forecasting --- Google Trends --- Romania --- ARIMA --- TBATS --- NNAR
Choose an application
Cancer is a leading cause of death worldwide, claiming millions of lives each year. Cancer biology is an essential research field to understand how cancer develops, evolves, and responds to therapy. By taking advantage of a series of “omics” technologies (e.g., genomics, transcriptomics, and epigenomics), computational methods in bioinformatics and machine learning can help scientists and researchers to decipher the complexity of cancer heterogeneity, tumorigenesis, and anticancer drug discovery. Particularly, bioinformatics enables the systematic interrogation and analysis of cancer from various perspectives, including genetics, epigenetics, signaling networks, cellular behavior, clinical manifestation, and epidemiology. Moreover, thanks to the influx of next-generation sequencing (NGS) data in the postgenomic era and multiple landmark cancer-focused projects, such as The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), machine learning has a uniquely advantageous role in boosting data-driven cancer research and unraveling novel methods for the prognosis, prediction, and treatment of cancer.
tumor mutational burden --- DNA damage repair genes --- immunotherapy --- biomarker --- biomedical informatics --- breast cancer --- estrogen receptor alpha --- persistent organic pollutants --- drug-drug interaction networks --- molecular docking --- NGS --- ctDNA --- VAF --- liquid biopsy --- filtering --- variant calling --- DEGs --- diagnosis --- ovarian cancer --- PUS7 --- RMGs --- CPA4 --- bladder urothelial carcinoma --- immune cells --- T cell exhaustion --- checkpoint --- architectural distortion --- image processing --- depth-wise convolutional neural network --- mammography --- bladder cancer --- Annexin family --- survival analysis --- prognostic signature --- therapeutic target --- R Shiny application --- RNA-seq --- proteomics --- multi-omics analysis --- T-cell acute lymphoblastic leukemia --- CCLE --- sitagliptin --- thyroid cancer (THCA) --- papillary thyroid cancer (PTCa) --- thyroidectomy --- metastasis --- drug resistance --- n/a --- biomarker identification --- transcriptomics --- machine learning --- prediction --- variable selection --- major histocompatibility complex --- bidirectional long short-term memory neural network --- deep learning --- cancer --- incidence --- mortality --- modeling --- forecasting --- Google Trends --- Romania --- ARIMA --- TBATS --- NNAR
Choose an application
Cancer is a leading cause of death worldwide, claiming millions of lives each year. Cancer biology is an essential research field to understand how cancer develops, evolves, and responds to therapy. By taking advantage of a series of “omics” technologies (e.g., genomics, transcriptomics, and epigenomics), computational methods in bioinformatics and machine learning can help scientists and researchers to decipher the complexity of cancer heterogeneity, tumorigenesis, and anticancer drug discovery. Particularly, bioinformatics enables the systematic interrogation and analysis of cancer from various perspectives, including genetics, epigenetics, signaling networks, cellular behavior, clinical manifestation, and epidemiology. Moreover, thanks to the influx of next-generation sequencing (NGS) data in the postgenomic era and multiple landmark cancer-focused projects, such as The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), machine learning has a uniquely advantageous role in boosting data-driven cancer research and unraveling novel methods for the prognosis, prediction, and treatment of cancer.
Research & information: general --- Biology, life sciences --- tumor mutational burden --- DNA damage repair genes --- immunotherapy --- biomarker --- biomedical informatics --- breast cancer --- estrogen receptor alpha --- persistent organic pollutants --- drug-drug interaction networks --- molecular docking --- NGS --- ctDNA --- VAF --- liquid biopsy --- filtering --- variant calling --- DEGs --- diagnosis --- ovarian cancer --- PUS7 --- RMGs --- CPA4 --- bladder urothelial carcinoma --- immune cells --- T cell exhaustion --- checkpoint --- architectural distortion --- image processing --- depth-wise convolutional neural network --- mammography --- bladder cancer --- Annexin family --- survival analysis --- prognostic signature --- therapeutic target --- R Shiny application --- RNA-seq --- proteomics --- multi-omics analysis --- T-cell acute lymphoblastic leukemia --- CCLE --- sitagliptin --- thyroid cancer (THCA) --- papillary thyroid cancer (PTCa) --- thyroidectomy --- metastasis --- drug resistance --- biomarker identification --- transcriptomics --- machine learning --- prediction --- variable selection --- major histocompatibility complex --- bidirectional long short-term memory neural network --- deep learning --- cancer --- incidence --- mortality --- modeling --- forecasting --- Google Trends --- Romania --- ARIMA --- TBATS --- NNAR
Listing 1 - 5 of 5 |
Sort by
|