Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

UGent (1)

ULB (1)

ULiège (1)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2020 (4)

Listing 1 - 4 of 4
Sort by

Book
Advanced Flame Retardant Materials
Author:
ISBN: 3039283502 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Advanced Flame Retardant Materials
Author:
Year: 2020 Publisher: [Place of publication not identified] : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recent disasters caused by the spread of fire in buildings and in transportations remind us of the importance of fire protection. Using flame-retardant materials is one important element of the firefighting strategy, which aims to prevent fire development and propagation. These materials are used in different applications, such as in textiles, coatings, foams, furniture, and cables. The development of more efficient and environmentally friendly flame-retardant additives is an active multidisciplinary approach that has attracted a great deal of interest. Studies have aimed at the development of new, sustainable, and flame-retardant additives/materials, providing high performance and low toxicity. Also studied were their properties during ageing and recycling, as well as modeling physical and chemical processes occuring before ignition and during their combustion. The development of sustainable flame retardants and understanding their modes of action provide a strong link between these topics and cover many fields from organic chemistry, materials engineering, and toxicology, to physics and mathematics.


Book
Advanced Flame Retardant Materials
Author:
Year: 2020 Publisher: [Place of publication not identified] : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recent disasters caused by the spread of fire in buildings and in transportations remind us of the importance of fire protection. Using flame-retardant materials is one important element of the firefighting strategy, which aims to prevent fire development and propagation. These materials are used in different applications, such as in textiles, coatings, foams, furniture, and cables. The development of more efficient and environmentally friendly flame-retardant additives is an active multidisciplinary approach that has attracted a great deal of interest. Studies have aimed at the development of new, sustainable, and flame-retardant additives/materials, providing high performance and low toxicity. Also studied were their properties during ageing and recycling, as well as modeling physical and chemical processes occuring before ignition and during their combustion. The development of sustainable flame retardants and understanding their modes of action provide a strong link between these topics and cover many fields from organic chemistry, materials engineering, and toxicology, to physics and mathematics.


Book
Advanced Flame Retardant Materials
Author:
Year: 2020 Publisher: [Place of publication not identified] : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recent disasters caused by the spread of fire in buildings and in transportations remind us of the importance of fire protection. Using flame-retardant materials is one important element of the firefighting strategy, which aims to prevent fire development and propagation. These materials are used in different applications, such as in textiles, coatings, foams, furniture, and cables. The development of more efficient and environmentally friendly flame-retardant additives is an active multidisciplinary approach that has attracted a great deal of interest. Studies have aimed at the development of new, sustainable, and flame-retardant additives/materials, providing high performance and low toxicity. Also studied were their properties during ageing and recycling, as well as modeling physical and chemical processes occuring before ignition and during their combustion. The development of sustainable flame retardants and understanding their modes of action provide a strong link between these topics and cover many fields from organic chemistry, materials engineering, and toxicology, to physics and mathematics.

Listing 1 - 4 of 4
Sort by