Listing 1 - 9 of 9 |
Sort by
|
Choose an application
Cet ouvrage est issu d’un cours de Master 2 enseigné à l’UPMC entre 2004 et 2007. Nous y présentons une sélection de techniques mathématiques orientées vers la résolution des équations aux dérivées partielles elliptiques semi-linéaires et quasi-linéaires. Après un vade-mecum d'analyse réelle et d'analyse fonctionnelle de base pour les EDP, sans démonstrations pour les points les plus connus, nous parcourons ainsi les théorèmes de point fixe classiques, les opérateurs de superposition dans les espaces de Lebesgue et de Sobolev, la méthode de Galerkin, les principes du maximum et la régularité elliptique, nous faisons une excursion assez longue dans divers aspects du calcul des variations puis terminons par les opérateurs monotones et pseudo-monotones. Tout ceci est agrémenté d’exemples et chaque chapitre est complété d'un nombre d’exercices qui croît essentiellement avec le numéro du chapitre, au fur et à mesure que de nouveaux matériaux sont présentés. This book stems from lectures notes of a Master 2 class held at UPMC between 2004 and 2007. A selection of mathematical techniques geared towards the resolution of semilinear and quasilinear elliptic partial differential equations is presented. After a short survival guide in basic real and functional analysis for PDEs, without proofs for the most well-known results, we walk through the classical fixed point theorems, the superposition operators in Lebesgue and Sobolev spaces, the Galerkin method, the maximum principles and elliptic regularity, we make a rather long foray into various aspects of the calculus of variations, and conclude with monotone and pseudo-monotone operators, by way of numerous examples. Each chapter is complemented by a number of exercises that grows with the chapter number as more and more material is made available. .
Choose an application
This textbook presents the essential parts of the modern theory of nonlinear partial differential equations, including the calculus of variations. After a short review of results in real and functional analysis, the author introduces the main mathematical techniques for solving both semilinear and quasilinear elliptic PDEs, and the associated boundary value problems. Key topics include infinite dimensional fixed point methods, the Galerkin method, the maximum principle, elliptic regularity, and the calculus of variations. Aimed at graduate students and researchers, this textbook contains numerous examples and exercises and provides several comments and suggestions for further study.
Mathematics. --- Functional analysis. --- Partial differential equations. --- Calculus of variations. --- Partial Differential Equations. --- Calculus of Variations and Optimal Control; Optimization. --- Functional Analysis. --- Differential equations, partial. --- Mathematical optimization. --- Functional calculus --- Calculus of variations --- Functional equations --- Integral equations --- Optimization (Mathematics) --- Optimization techniques --- Optimization theory --- Systems optimization --- Mathematical analysis --- Maxima and minima --- Operations research --- Simulation methods --- System analysis --- Partial differential equations --- Differential equations, Partial. --- Isoperimetrical problems --- Variations, Calculus of
Choose an application
Mathematical models --- Calculus of variations --- Functional analysis
Choose an application
Cet ouvrage est issu d’un cours de Master 2 enseigné à l’UPMC entre 2004 et 2007. Nous y présentons une sélection de techniques mathématiques orientées vers la résolution des équations aux dérivées partielles elliptiques semi-linéaires et quasi-linéaires. Après un vade-mecum d'analyse réelle et d'analyse fonctionnelle de base pour les EDP, sans démonstrations pour les points les plus connus, nous parcourons ainsi les théorèmes de point fixe classiques, les opérateurs de superposition dans les espaces de Lebesgue et de Sobolev, la méthode de Galerkin, les principes du maximum et la régularité elliptique, nous faisons une excursion assez longue dans divers aspects du calcul des variations puis terminons par les opérateurs monotones et pseudo-monotones. Tout ceci est agrémenté d’exemples et chaque chapitre est complété d'un nombre d’exercices qui croît essentiellement avec le numéro du chapitre, au fur et à mesure que de nouveaux matériaux sont présentés. This book stems from lectures notes of a Master 2 class held at UPMC between 2004 and 2007. A selection of mathematical techniques geared towards the resolution of semilinear and quasilinear elliptic partial differential equations is presented. After a short survival guide in basic real and functional analysis for PDEs, without proofs for the most well-known results, we walk through the classical fixed point theorems, the superposition operators in Lebesgue and Sobolev spaces, the Galerkin method, the maximum principles and elliptic regularity, we make a rather long foray into various aspects of the calculus of variations, and conclude with monotone and pseudo-monotone operators, by way of numerous examples. Each chapter is complemented by a number of exercises that grows with the chapter number as more and more material is made available. .
Mathematics --- Partial differential equations --- Differential equations --- differentiaalvergelijkingen --- wiskunde
Choose an application
This textbook presents the essential parts of the modern theory of nonlinear partial differential equations, including the calculus of variations. After a short review of results in real and functional analysis, the author introduces the main mathematical techniques for solving both semilinear and quasilinear elliptic PDEs, and the associated boundary value problems. Key topics include infinite dimensional fixed point methods, the Galerkin method, the maximum principle, elliptic regularity, and the calculus of variations. Aimed at graduate students and researchers, this textbook contains numerous examples and exercises and provides several comments and suggestions for further study.
Functional analysis --- Partial differential equations --- Differential equations --- Numerical methods of optimisation --- Operational research. Game theory --- differentiaalvergelijkingen --- functies (wiskunde) --- wiskunde --- kansrekening --- optimalisatie
Choose an application
This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems. .
Choose an application
This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems. .
Partial differential equations --- Mathematics --- differentiaalvergelijkingen --- wiskunde
Choose an application
Choose an application
Listing 1 - 9 of 9 |
Sort by
|