Narrow your search

Library

ULB (2)

KU Leuven (1)

Odisee (1)

Thomas More Mechelen (1)

UCLL (1)

ULiège (1)

VDIC (1)

VIVES (1)


Resource type

book (2)

periodical (2)


Language

English (4)


Year
From To Submit

2012 (4)

Listing 1 - 4 of 4
Sort by

Periodical
Central immune senescence, reversal potentials
Author:
Year: 2012 Publisher: Rijeka, HR : InTech,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This chapter summarised current knowledge on thymic senescence, a central immune tissue that suffers significant morphological changes and functional impairment during ageing. The epithelial network is in focus that provides the niche for developing thymocytes until adipose involution begins. We have discussed physiological thymic epithelial senescence in detail with respect to the signalling pathways involved in the process (Kvell et al. 2010). It has also been shown that steroid induced accelerated rate thymic epithelial senescence quite resembles physiological rate senescence (except for its speed) at the molecular level (Talaber et al. 2011). The data presented confirm that Wnt4 can efficiently rescue thymic epithelial cells from steroid-induced adipose involution at the molecular level (Talaber et al. 2011). Since physiological and steroid-induced thymic epithelial senescence are identical at the molecular level, it is anticipated that sustained Wnt4 presence in the thymic context can efficiently prolong FoxN1 expression, maintain thymic epithelial identity and prevent transdifferentiation towards adipocyte lineage. The same works identify LAP2[alpha] as a pro-ageing molecular factor promoting the trans-differentiation of thymic epithelial cells into preadipocytes via EMT. The thymus selective decrease of LAP2[alpha] activity through small molecule compounds could theoretically shift the delicate molecular balance towards the same direction as increased Wnt4 presence.


Periodical
Central immune senescence, reversal potentials
Author:
Year: 2012 Publisher: Rijeka, HR : InTech,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This chapter summarised current knowledge on thymic senescence, a central immune tissue that suffers significant morphological changes and functional impairment during ageing. The epithelial network is in focus that provides the niche for developing thymocytes until adipose involution begins. We have discussed physiological thymic epithelial senescence in detail with respect to the signalling pathways involved in the process (Kvell et al. 2010). It has also been shown that steroid induced accelerated rate thymic epithelial senescence quite resembles physiological rate senescence (except for its speed) at the molecular level (Talaber et al. 2011). The data presented confirm that Wnt4 can efficiently rescue thymic epithelial cells from steroid-induced adipose involution at the molecular level (Talaber et al. 2011). Since physiological and steroid-induced thymic epithelial senescence are identical at the molecular level, it is anticipated that sustained Wnt4 presence in the thymic context can efficiently prolong FoxN1 expression, maintain thymic epithelial identity and prevent transdifferentiation towards adipocyte lineage. The same works identify LAP2[alpha] as a pro-ageing molecular factor promoting the trans-differentiation of thymic epithelial cells into preadipocytes via EMT. The thymus selective decrease of LAP2[alpha] activity through small molecule compounds could theoretically shift the delicate molecular balance towards the same direction as increased Wnt4 presence.


Book
Chapter 31 Central Immune Senescence, Reversal Potentials
Authors: ---
Year: 2012 Publisher: [Place of publication not identified] : InTechOpen,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ageing is a complex process that affects all living organisms. Senescence is not only conceivable in multicellular organisms, but also in unicellulars. Unlike certain diseases that have specific morbidity rates, ageing is a physiological process that affects all individuals that live long enough (unaffected by i.e. predation or famine) to experience senescence.


Book
Chapter 31 Central Immune Senescence, Reversal Potentials
Authors: ---
Year: 2012 Publisher: [Place of publication not identified] : InTechOpen,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ageing is a complex process that affects all living organisms. Senescence is not only conceivable in multicellular organisms, but also in unicellulars. Unlike certain diseases that have specific morbidity rates, ageing is a physiological process that affects all individuals that live long enough (unaffected by i.e. predation or famine) to experience senescence.

Listing 1 - 4 of 4
Sort by