Listing 1 - 10 of 14 | << page >> |
Sort by
|
Choose an application
Social sciences --- Social surveys --- Surveys --- #SBIB:303H513 --- 301 --- AA / International- internationaal --- Behavioral sciences --- Human sciences --- Sciences, Social --- Social science --- Social studies --- Civilization --- Government surveys --- Mathematical geography --- Community surveys --- Surveys, Social --- Research&delete& --- Statistical methods --- Methoden sociale wetenschappen: bijzondere statistieken --- Techniek van statistische inlichtingen. Organisatie van de statistische enquêtes. Statistische kritiek --- Research --- Methods in social research (general)
Choose an application
Choose an application
The book provides a comprehensive introduction to Stata with an emphasis on data management, linear regression, logistic modeling, and using programs to automate repetitive tasks.
Programming --- Quantitative methods in social research --- Mathematical statistics --- Statistics --- Data processing --- Stata --- #SBIB:303H4 --- #SBIB:303H520 --- Informatica in de sociale wetenschappen --- Methoden sociale wetenschappen: techniek van de analyse, algemeen --- Stata. --- Statistics - Data processing --- Mathematical statistics - Data processing
Choose an application
Quantitative methods in social research --- Mathematical statistics --- Programming
Choose an application
Quantitative methods in social research --- Mathematical statistics --- Programming
Choose an application
Choose an application
Choose an application
Survey sampling is fundamentally an applied field. The goal in this book is to put an array of tools at the fingertips of practitioners by explaining approaches long used by survey statisticians, illustrating how existing software can be used to solve survey problems, and developing some specialized software where needed. This book serves at least three audiences: (1) Students seeking a more in-depth understanding of applied sampling either through a second semester-long course or by way of a supplementary reference; (2) Survey statisticians searching for practical guidance on how to apply concepts learned in theoretical or applied sampling courses; and (3) Social scientists and other survey practitioners who desire insight into the statistical thinking and steps taken to design, select, and weight random survey samples. Several survey data sets are used to illustrate how to design samples, to make estimates from complex surveys for use in optimizing the sample allocation, and to calculate weights. Realistic survey projects are used to demonstrate the challenges and provide a context for the solutions. The book covers several topics that either are not included or are dealt with in a limited way in other texts. These areas include: sample size computations for multistage designs; power calculations related to surveys; mathematical programming for sample allocation in a multi-criteria optimization setting; nuts and bolts of area probability sampling; multiphase designs; quality control of survey operations; and statistical software for survey sampling and estimation. An associated R package, PracTools, contains a number of specialized functions for sample size and other calculations. The data sets used in the book are also available in PracTools, so that the reader may replicate the examples or perform further analyses. Richard Valliant is a Research Professor at the Institute for Social Research of the University of Michigan and at the Joint Program in Survey Methodology at the University of Maryland. He is a Fellow of the American Statistical Association, an elected member of the International Statistical Institute, and has been an associate editor of the Journal of the American Statistical Association, Journal of Official Statistics, and Survey Methodology. Jill A. Dever is a Senior Research Statistician at RTI International in Washington, D.C. where she works on a variety of surveys related to health care and education. Her current research interests include software for optimizing complex sample designs, variance estimation using calibrated analysis weights, and methods to evaluate the utility of non-probability sampling. Frauke Kreuter is an Associate Professor in the Joint Program in Survey Methodology at the University of Maryland, USA; Professor of Statistics at Ludwig-Maximilians-Universität in Munich, Germany; and head of the Statistical Methods Research Department at the Institute for Employment Research (IAB) in Nürnberg, Germany. Currently she is associate editor of the Journal of the Royal Statistical Society, Journal of Official Statistics, Sociological Methods and Research, Survey Research Methods, and the Stata Journal.
Sampling (Statistics) --- Mathematical statistics --- Mathematics --- Physical Sciences & Mathematics --- Mathematical Statistics --- Statistical inference --- Statistics, Mathematical --- Random sampling --- Statistics of sampling --- Statistical methods --- Statistics. --- Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law. --- Statistics for Life Sciences, Medicine, Health Sciences. --- Statistical Theory and Methods. --- Statistics for Social Science, Behavioral Science, Education, Public Policy, and Law. --- Statistical analysis --- Statistical data --- Statistical science --- Econometrics --- Mathematical statistics. --- Statistics for Social Sciences, Humanities, Law. --- Statistics --- Probabilities --- Statistics .
Choose an application
The goal of this book is to put an array of tools at the fingertips of students, practitioners, and researchers by explaining approaches long used by survey statisticians, illustrating how existing software can be used to solve survey problems, and developing some specialized software where needed. This volume serves at least three audiences: (1) students of applied sampling techniques; 2) practicing survey statisticians applying concepts learned in theoretical or applied sampling courses; and (3) social scientists and other survey practitioners who design, select, and weight survey samples. The text thoroughly covers fundamental aspects of survey sampling, such as sample size calculation (with examples for both single- and multi-stage sample design) and weight computation, accompanied by software examples to facilitate implementation. Features include step-by-step instructions for calculating survey weights, extensive real-world examples and applications, and representative programming code in R, SAS, and other packages. Since the publication of the first edition in 2013, there have been important developments in making inferences from nonprobability samples, in address-based sampling (ABS), and in the application of machine learning techniques for survey estimation. New to this revised and expanded edition: • Details on new functions in the PracTools package • Additional machine learning methods to form weighting classes • New coverage of nonlinear optimization algorithms for sample allocation • Reflecting effects of multiple weighting steps (nonresponse and calibration) on standard errors • A new chapter on nonprobability sampling • Additional examples, exercises, and updated references throughout Richard Valliant, PhD, is Research Professor Emeritus at the Institute for Social Research at the University of Michigan and at the Joint Program in Survey Methodology at the University of Maryland. He is a Fellow of the American Statistical Association, an elected member of the International Statistical Institute, and has been an Associate Editor of the Journal of the American Statistical Association, Journal of Official Statistics, and Survey Methodology. Jill A. Dever, PhD, is Senior Research Statistician at RTI International in Washington, DC. She is a Fellow of the American Statistical Association, Associate Editor for Survey Methodology and the Journal of Official Statistics, and an Assistant Research Professor in the Joint Program in Survey Methodology at the University of Maryland. She has served on several panels for the National Academy of Sciences and as a task force member for the American Association of Public Opinion Research’s report on nonprobability sampling. Frauke Kreuter, PhD, is Professor and Director of the Joint Program in Survey Methodology at the University of Maryland, Professor of Statistics and Methodology at the University of Mannheim, and Head of the Statistical Methods Research Department at the Institute for Employment Research (IAB) in Nürnberg, Germany. She is a Fellow of the American Statistical Association and has been Associate Editor of the Journal of the Royal Statistical Society,Journal of Official Statistics, Sociological Methods and Research, Survey Research Methods, Public Opinion Quarterly, American Sociological Review, and the Stata Journal. She is founder of the International Program for Survey and Data Science and co-founder of the Coleridge Initiative.
Sociology --- Statistical science --- Law --- Mathematical statistics --- Biomathematics. Biometry. Biostatistics --- medische statistiek --- machine learning --- biostatistiek --- wetgeving --- statistiek --- biometrie --- statistisch onderzoek --- Statistics. --- Mathematical statistics. --- Statistics for Social Sciences, Humanities, Law. --- Statistics for Life Sciences, Medicine, Health Sciences. --- Statistical Theory and Methods. --- Mathematics --- Statistical inference --- Statistics, Mathematical --- Statistics --- Probabilities --- Sampling (Statistics) --- Statistical analysis --- Statistical data --- Statistical methods --- Econometrics --- Geology. --- Geology --- Political aspects. --- Statistics .
Choose an application
The goal of this book is to put an array of tools at the fingertips of students, practitioners, and researchers by explaining approaches long used by survey statisticians, illustrating how existing software can be used to solve survey problems, and developing some specialized software where needed. This volume serves at least three audiences: (1) students of applied sampling techniques; 2) practicing survey statisticians applying concepts learned in theoretical or applied sampling courses; and (3) social scientists and other survey practitioners who design, select, and weight survey samples. The text thoroughly covers fundamental aspects of survey sampling, such as sample size calculation (with examples for both single- and multi-stage sample design) and weight computation, accompanied by software examples to facilitate implementation. Features include step-by-step instructions for calculating survey weights, extensive real-world examples and applications, and representative programming code in R, SAS, and other packages. Since the publication of the first edition in 2013, there have been important developments in making inferences from nonprobability samples, in address-based sampling (ABS), and in the application of machine learning techniques for survey estimation. New to this revised and expanded edition: • Details on new functions in the PracTools package • Additional machine learning methods to form weighting classes • New coverage of nonlinear optimization algorithms for sample allocation • Reflecting effects of multiple weighting steps (nonresponse and calibration) on standard errors • A new chapter on nonprobability sampling • Additional examples, exercises, and updated references throughout Richard Valliant, PhD, is Research Professor Emeritus at the Institute for Social Research at the University of Michigan and at the Joint Program in Survey Methodology at the University of Maryland. He is a Fellow of the American Statistical Association, an elected member of the International Statistical Institute, and has been an Associate Editor of the Journal of the American Statistical Association, Journal of Official Statistics, and Survey Methodology. Jill A. Dever, PhD, is Senior Research Statistician at RTI International in Washington, DC. She is a Fellow of the American Statistical Association, Associate Editor for Survey Methodology and the Journal of Official Statistics, and an Assistant Research Professor in the Joint Program in Survey Methodology at the University of Maryland. She has served on several panels for the National Academy of Sciences and as a task force member for the American Association of Public Opinion Research’s report on nonprobability sampling. Frauke Kreuter, PhD, is Professor and Director of the Joint Program in Survey Methodology at the University of Maryland, Professor of Statistics and Methodology at the University of Mannheim, and Head of the Statistical Methods Research Department at the Institute for Employment Research (IAB) in Nürnberg, Germany. She is a Fellow of the American Statistical Association and has been Associate Editor of the Journal of the Royal Statistical Society,Journal of Official Statistics, Sociological Methods and Research, Survey Research Methods, Public Opinion Quarterly, American Sociological Review, and the Stata Journal. She is founder of the International Program for Survey and Data Science and co-founder of the Coleridge Initiative.
Listing 1 - 10 of 14 | << page >> |
Sort by
|