Narrow your search

Library

AP (1)

EhB (1)

KDG (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

More...

Resource type

book (2)

digital (1)


Language

English (3)


Year
From To Submit

2006 (3)

Listing 1 - 3 of 3
Sort by
Kernel based algorithms for mining huge data sets : supervised, semi-supervised, and unsupervised learning
Authors: --- ---
ISSN: 1860949X ISBN: 9783540316817 3540316817 9786610610662 1280610662 3540316892 Year: 2006 Volume: v. 17 Publisher: Berlin, Germany ; New York, New York : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"Kernel Based Algorithms for Mining Huge Data Sets" is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets by using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction (feature elimination) and shows the similarities and differences between the two most popular unsupervised techniques, the principal component analysis (PCA) and the independent component analysis (ICA). The book presents various examples, software, algorithmic solutions enabling the reader to develop their own codes for solving the problems. The book is accompanied by a website for downloading both data and software for huge data sets modeling in a supervised and semisupervised manner, as well as MATLAB based PCA and ICA routines for unsupervised learning. The book focuses on a broad range of machine learning algorithms and it is particularly aimed at students, scientists, and practicing researchers in bioinformatics (gene microarrays), text-categorization, numerals recognition, as well as in the images and audio signals de-mixing (blind source separation) areas.

Keywords

Machine learning --- Data mining --- Kernel functions --- Apprentissage automatique --- Exploration de données (Informatique) --- Noyaux (Mathématiques) --- Engineering. --- Artificial intelligence. --- Engineering mathematics. --- Appl.Mathematics/Computational Methods of Engineering. --- Artificial Intelligence (incl. Robotics). --- Civil Engineering --- Computer Science --- Applied Mathematics --- Engineering & Applied Sciences --- Civil & Environmental Engineering --- Machine learning. --- Data mining. --- Kernel functions. --- Functions, Kernel --- Algorithmic knowledge discovery --- Factual data analysis --- KDD (Information retrieval) --- Knowledge discovery in data --- Knowledge discovery in databases --- Mining, Data --- Learning, Machine --- Computer science. --- Applied mathematics. --- Computer Science. --- Data Mining and Knowledge Discovery. --- Database searching --- Engineering --- Engineering analysis --- Mathematical analysis --- AI (Artificial intelligence) --- Artificial thinking --- Electronic brains --- Intellectronics --- Intelligence, Artificial --- Intelligent machines --- Machine intelligence --- Thinking, Artificial --- Bionics --- Cognitive science --- Digital computer simulation --- Electronic data processing --- Logic machines --- Machine theory --- Self-organizing systems --- Simulation methods --- Fifth generation computers --- Neural computers --- Informatics --- Science --- Mathematics --- Functions of complex variables --- Geometric function theory --- Artificial intelligence --- Mathematical and Computational Engineering. --- Artificial Intelligence.


Digital
Kernel Based Algorithms for Mining Huge Data Sets : Supervised, Semi-supervised, and Unsupervised Learning
Authors: --- ---
ISBN: 9783540316893 Year: 2006 Publisher: Berlin, Heidelberg Springer-Verlag Berlin Heidelberg

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Kernel Based Algorithms for Mining Huge Data Sets : Supervised, Semi-supervised, and Unsupervised Learning
Authors: --- --- ---
ISBN: 9783540316893 Year: 2006 Publisher: Berlin Heidelberg Springer Berlin Heidelberg

Loading...
Export citation

Choose an application

Bookmark

Abstract

"Kernel Based Algorithms for Mining Huge Data Sets" is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets by using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction (feature elimination) and shows the similarities and differences between the two most popular unsupervised techniques, the principal component analysis (PCA) and the independent component analysis (ICA). The book presents various examples, software, algorithmic solutions enabling the reader to develop their own codes for solving the problems. The book is accompanied by a website for downloading both data and software for huge data sets modeling in a supervised and semisupervised manner, as well as MATLAB based PCA and ICA routines for unsupervised learning. The book focuses on a broad range of machine learning algorithms and it is particularly aimed at students, scientists, and practicing researchers in bioinformatics (gene microarrays), text-categorization, numerals recognition, as well as in the images and audio signals de-mixing (blind source separation) areas.

Listing 1 - 3 of 3
Sort by