Listing 1 - 10 of 34 | << page >> |
Sort by
|
Choose an application
"In this book modern algorithmic techniques for summation, most of which have been introduced within the last decade, are developed and carefully implemented in the computer algebra system Maple." "The algorithms of Gosper, Zeilberger and Petkovsek on hypergeometric summation and recurrence equations and their q-analogues are covered, and similar algorithms on differential equations are considered. An equivalent theory of hyperexponential integration due to Almkvist and Zeilberger completes the book." "The combination of all results considered gives work with orthogonal polynomials and (hypergeometric type) special functions a solid algorithmic foundation. Hence, many examples from this very active field are given." "The present book is designed for use in the framework of a seminar but is also suitable for an advanced lecture course in this area."--Jacket.
519.1 --- 517.58 --- Combinatorics. Graph theory --- Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials. --- Hypergeometric functions. --- Mathematical physics. --- 517.58 Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials. --- 519.1 Combinatorics. Graph theory
Choose an application
Modern algorithmic techniques for summation, most of which were introduced in the 1990s, are developed here and carefully implemented in the computer algebra system Maple™. The algorithms of Fasenmyer, Gosper, Zeilberger, Petkovšek and van Hoeij for hypergeometric summation and recurrence equations, efficient multivariate summation as well as q-analogues of the above algorithms are covered. Similar algorithms concerning differential equations are considered. An equivalent theory of hyperexponential integration due to Almkvist and Zeilberger completes the book. The combination of these results gives orthogonal polynomials and (hypergeometric and q-hypergeometric) special functions a solid algorithmic foundation. Hence, many examples from this very active field are given. The materials covered are suitable for an introductory course on algorithmic summation and will appeal to students and researchers alike.
Mathematics. --- Differential equations. --- Special functions. --- Algorithms. --- Computer software. --- Combinatorics. --- Mathematical Software. --- Special Functions. --- Ordinary Differential Equations. --- Combinatorics --- Algebra --- Mathematical analysis --- Software, Computer --- Computer systems --- Algorism --- Arithmetic --- Special functions --- 517.91 Differential equations --- Differential equations --- Math --- Science --- Foundations --- Functions, special. --- Differential Equations. --- Hypergeometric functions.
Choose an application
Àlgebra --- Processament de dades --- Algorismes computacionals --- Algorismes per ordinadors --- Algorismes --- Geometria computacional --- Processament de dades electròniques --- Processament automàtic de dades --- Processament electrònic de dades --- Processament integrat de dades --- Sistematització de dades (Ordinadors) --- Tractament de dades --- Tractament electrònic de dades --- Tractament integrat de dades --- Automatització --- Informàtica --- Complexitat computacional --- Curació de dades --- Depuració (Informàtica) --- Estructures de dades (Informàtica) --- Gestió de bases de dades --- Informàtica mòbil --- Informàtica recreativa --- Intel·ligència artificial --- Sistemes en línia --- Temps real (Informàtica) --- Tractament del llenguatge natural (Informàtica) --- Processament òptic de dades --- Protecció de dades --- Transmissió de dades --- Tolerància als errors (Informàtica) --- Matemàtica --- Àlgebra universal --- Anàlisi combinatòria --- Àlgebra commutativa --- Anàlisi diofàntica --- Anàlisi espinorial --- Anàlisi p-àdica --- Àlgebra multilineal --- Àlgebres associatives --- Àlgebres no commutatives --- Combinatòria (Matemàtica) --- Congruències i residus --- Determinants (Matemàtica) --- Equacions --- Estructures algebraiques ordenades --- Factors (Àlgebra) --- Formes (Matemàtica) --- Interpolació (Matemàtica) --- Logaritmes --- Permutacions --- Representacions d'àlgebres --- Sèries (Matemàtica) --- Successions (Matemàtica) --- Teorema del binomi --- Teoria de grups --- Teoria de nombres --- Teoria de la dualitat (Matemàtica) --- Anàlisi matemàtica --- Algorismes en línia --- Algebra --- Computer science --- Data processing. --- Mathematics. --- Computer mathematics --- Electronic data processing --- Mathematics
Choose an application
Modern algorithmic techniques for summation, most of which were introduced in the 1990s, are developed here and carefully implemented in the computer algebra system Maple™. The algorithms of Fasenmyer, Gosper, Zeilberger, Petkovšek and van Hoeij for hypergeometric summation and recurrence equations, efficient multivariate summation as well as q-analogues of the above algorithms are covered. Similar algorithms concerning differential equations are considered. An equivalent theory of hyperexponential integration due to Almkvist and Zeilberger completes the book. The combination of these results gives orthogonal polynomials and (hypergeometric and q-hypergeometric) special functions a solid algorithmic foundation. Hence, many examples from this very active field are given. The materials covered are suitable for an introductory course on algorithmic summation and will appeal to students and researchers alike.
Algebraic geometry --- Differential equations --- Mathematical control systems --- Discrete mathematics --- Mathematics --- Computer science --- Computer architecture. Operating systems --- Computer. Automation --- differentiaalvergelijkingen --- discrete wiskunde --- bedrijfssoftware --- functies (wiskunde) --- wiskunde --- algoritmen
Choose an application
This textbook offers an algorithmic introduction to the field of computer algebra. A leading expert in the field, the author guides readers through numerous hands-on tutorials designed to build practical skills and algorithmic thinking. This implementation-oriented approach equips readers with versatile tools that can be used to enhance studies in mathematical theory, applications, or teaching. Presented using Mathematica code, the book is fully supported by downloadable sessions in Mathematica, Maple, and Maxima. Opening with an introduction to computer algebra systems and the basics of programming mathematical algorithms, the book goes on to explore integer arithmetic. A chapter on modular arithmetic completes the number-theoretic foundations, which are then applied to coding theory and cryptography. From here, the focus shifts to polynomial arithmetic and algebraic numbers, with modern algorithms allowing the efficient factorization of polynomials. The final chapters offer extensions into more advanced topics: simplification and normal forms, power series, summation formulas, and integration. Computer Algebra is an indispensable resource for mathematics and computer science students new to the field. Numerous examples illustrate algorithms and their implementation throughout, with online support materials to encourage hands-on exploration. Prerequisites are minimal, with only a knowledge of calculus and linear algebra assumed. In addition to classroom use, the elementary approach and detailed index make this book an ideal reference for algorithms in computer algebra.
Mathematical logic --- Algebra --- Mathematical control systems --- Computer science --- Computer architecture. Operating systems --- Computer. Automation --- algebra --- bedrijfssoftware --- informatica --- wiskunde --- algoritmen
Choose an application
Dieses Lehrbuch gibt eine Einführung in das moderne Gebiet der Computeralgebra. Während die ersten 9 Kapitel den Standardkanon abdecken, werden in den restlichen 3 Kapiteln Themen behandelt, welche in dieser Form noch nicht in Lehrbuchform erschienen sind und sich für eine weiterführende Vorlesung anbieten. Die betrachteten Algorithmen werden in Sitzungen mit dem Computeralgebrasystem Mathematica programmiert und getestet. Alle Sitzungen werden alternativ auch als Worksheets für Maple und MuPAD im Internet bereitgestellt, so dass Mathematica gänzlich durch Maple oder MuPAD ersetzt werden kann. Durch die Verwendung realer Implementierungen anstelle von Pseudocode werden die betrachteten Algorithmen sofort anwendbar und überprüfbar. Kenntnisse der höheren Algebra werden nicht vorausgesetzt, dennoch werden alle Beweise geführt. Da das Buch elementar gehalten ist und einen sehr ausführlichen Index besitzt, ist es auch als Nachschlagewerk über Algorithmen der Computeralgebra gut geeignet. Der Autor (http://www.mathematik.uni-kassel.de/~koepf) ist seit einigen Jahren Sprecher der Fachgruppe Computeralgebra (http://www.fachgruppe-computeralgebra.de) und forscht und lehrt seit vielen Jahren auf dem Gebiet der Computeralgebra.
Algebra. --- Computer science—Mathematics. --- Algorithms. --- Computer software. --- Symbolic and Algebraic Manipulation. --- Mathematical Software.
Choose an application
Choose an application
This book presents contributions of international and local experts from the African Institute for Mathematical Sciences (AIMS-Cameroon) and also from other local universities in the domain of orthogonal polynomials and applications. The topics addressed range from univariate to multivariate orthogonal polynomials, from multiple orthogonal polynomials and random matrices to orthogonal polynomials and Painlevé equations. The contributions are based on lectures given at the AIMS-Volkswagen Stiftung Workshop on Introduction of Orthogonal Polynomials and Applications held on October 5–12, 2018 in Douala, Cameroon. This workshop, funded within the framework of the Volkswagen Foundation Initiative "Symposia and Summer Schools", was aimed globally at promoting capacity building in terms of research and training in orthogonal polynomials and applications, discussions and development of new ideas as well as development and enhancement of networking including south-south cooperation.
Special functions. --- Special Functions. --- Orthogonal polynomials --- Special functions --- Mathematical analysis --- Fourier analysis --- Functions, Orthogonal --- Polynomials
Choose an application
This book presents contributions of international and local experts from the African Institute for Mathematical Sciences (AIMS-Cameroon) and also from other local universities in the domain of orthogonal polynomials and applications. The topics addressed range from univariate to multivariate orthogonal polynomials, from multiple orthogonal polynomials and random matrices to orthogonal polynomials and Painlevé equations. The contributions are based on lectures given at the AIMS-Volkswagen Stiftung Workshop on Introduction of Orthogonal Polynomials and Applications held on October 5–12, 2018 in Douala, Cameroon. This workshop, funded within the framework of the Volkswagen Foundation Initiative "Symposia and Summer Schools", was aimed globally at promoting capacity building in terms of research and training in orthogonal polynomials and applications, discussions and development of new ideas as well as development and enhancement of networking including south-south cooperation.
Mathematics --- functies (wiskunde) --- wiskunde
Choose an application
Listing 1 - 10 of 34 | << page >> |
Sort by
|