Listing 1 - 2 of 2 |
Sort by
|
Choose an application
"The name "random walk" for a problem of a displacement of a point in a sequence of independent random steps was coined by Karl Pearson in 1905 in a question posed to readers of "Nature". The same year, a similar problem was formulated by Albert Einstein in one of his Annus Mirabilis works. Even earlier such a problem was posed by Louis Bachelier in his thesis devoted to the theory of financial speculations in 1900. Nowadays the theory of random walks has proved useful in physics and chemistry (diffusion, reactions, mixing in flows), economics, biology (from animal spread to motion of subcellular structures) and in many other disciplines. The random walk approach serves not only as a model of simple diffusion but of many complex sub- and super-diffusive transport processes as well. This book discusses the main variants of random walks and gives the most important mathematical tools for their theoretical description"--
Choose an application
This volume provides the latest developments in the field of fractional dynamics, which covers fractional (anomalous) transport phenomena, fractional statistical mechanics, fractional quantum mechanics and fractional quantum field theory. The contributors are selected based on their active and important contributions to their respective topics. This volume is the first of its kind that covers such a comprehensive range of topics in fractional dynamics. It will point out to advanced undergraduate and graduate students, and young researchers the possible directions of research in this subject. I
Fractional calculus. --- Dynamics. --- Diffusion --- Dynamical systems --- Kinetics --- Mathematics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics --- Derivatives and integrals, Fractional --- Differentiation of arbitrary order, Integration and --- Differintegration, Generalized --- Fractional derivatives and integrals --- Generalized calculus --- Generalized differintegration --- Integrals, Fractional derivatives and --- Integration and differentiation of arbitrary order --- Calculus --- Mathematical models. --- Fractional calculus --- Dynamics --- Mathematical models --- Diffusion - Mathematical models
Listing 1 - 2 of 2 |
Sort by
|