Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Choose an application
Choose an application
Choose an application
Renewable fuels and chemicals derived from lignocellulosic biomass offer unprecedented opportunities for replacing fossil fuel derivatives, reducing our overdependence on imported oil, and mitigating current climate change trends. Despite technical developments and considerable efforts, breakthrough technologies are still required to overcome hurdles in developing sustainable biorefineries. In recent years, new biorefinery concepts including a lignin-first approach and a closed-loop biorefinery have been introduced to tackle technoeconomic challenges. Furthermore, researchers have advanced the development of new technologies which enable the utilization of biomass components for sustainable materials. It is now apparent that advanced processes are essential for ensuring the success of future biorefineries. This book presents processes for biomass fractionation, lignin valorization, and sugar conversion or introduces new bioproducts (chemicals and materials) from renewable resources, addressing the current status, technical/technoeconomic challenges, and new strategies.
Technology: general issues --- Biomass --- two-step pretreatment --- steam explosion --- organosolv treatment --- empty fruit bunch --- pinewood --- green pretreatment --- enzymatic hydrolysis --- lignin structural features --- poplar --- FTIR --- contaminants --- by-products --- lignin valorization --- lignin applications --- 3D printing --- electrochemical material --- medical application --- drying effect --- cellulose --- hornification --- porosity --- bioethanol --- economic analysis --- hand sanitiser --- oil palm empty fruit bunch (OPEFB) --- simultaneous saccharification and fermentation --- SuperPro Designer® --- renewable fuel --- high-density fuel --- α-pinene dimerization --- turpentine --- stannic chloride molten salt hydrates --- xylooligosaccharides --- autohydrolysis --- sweet sorghum bagasse --- isobutanol --- biorefinery --- metabolic engineering --- biomass utilization --- aqueous biphasic system --- dilute acid hydrolysate --- furfural production --- solvent extraction --- response surface methodology --- biomass fractionation --- bioproducts
Choose an application
Renewable fuels and chemicals derived from lignocellulosic biomass offer unprecedented opportunities for replacing fossil fuel derivatives, reducing our overdependence on imported oil, and mitigating current climate change trends. Despite technical developments and considerable efforts, breakthrough technologies are still required to overcome hurdles in developing sustainable biorefineries. In recent years, new biorefinery concepts including a lignin-first approach and a closed-loop biorefinery have been introduced to tackle technoeconomic challenges. Furthermore, researchers have advanced the development of new technologies which enable the utilization of biomass components for sustainable materials. It is now apparent that advanced processes are essential for ensuring the success of future biorefineries. This book presents processes for biomass fractionation, lignin valorization, and sugar conversion or introduces new bioproducts (chemicals and materials) from renewable resources, addressing the current status, technical/technoeconomic challenges, and new strategies.
Biomass --- two-step pretreatment --- steam explosion --- organosolv treatment --- empty fruit bunch --- pinewood --- green pretreatment --- enzymatic hydrolysis --- lignin structural features --- poplar --- FTIR --- contaminants --- by-products --- lignin valorization --- lignin applications --- 3D printing --- electrochemical material --- medical application --- drying effect --- cellulose --- hornification --- porosity --- bioethanol --- economic analysis --- hand sanitiser --- oil palm empty fruit bunch (OPEFB) --- simultaneous saccharification and fermentation --- SuperPro Designer® --- renewable fuel --- high-density fuel --- α-pinene dimerization --- turpentine --- stannic chloride molten salt hydrates --- xylooligosaccharides --- autohydrolysis --- sweet sorghum bagasse --- isobutanol --- biorefinery --- metabolic engineering --- biomass utilization --- aqueous biphasic system --- dilute acid hydrolysate --- furfural production --- solvent extraction --- response surface methodology --- biomass fractionation --- bioproducts
Choose an application
Renewable fuels and chemicals derived from lignocellulosic biomass offer unprecedented opportunities for replacing fossil fuel derivatives, reducing our overdependence on imported oil, and mitigating current climate change trends. Despite technical developments and considerable efforts, breakthrough technologies are still required to overcome hurdles in developing sustainable biorefineries. In recent years, new biorefinery concepts including a lignin-first approach and a closed-loop biorefinery have been introduced to tackle technoeconomic challenges. Furthermore, researchers have advanced the development of new technologies which enable the utilization of biomass components for sustainable materials. It is now apparent that advanced processes are essential for ensuring the success of future biorefineries. This book presents processes for biomass fractionation, lignin valorization, and sugar conversion or introduces new bioproducts (chemicals and materials) from renewable resources, addressing the current status, technical/technoeconomic challenges, and new strategies.
Technology: general issues --- Biomass --- two-step pretreatment --- steam explosion --- organosolv treatment --- empty fruit bunch --- pinewood --- green pretreatment --- enzymatic hydrolysis --- lignin structural features --- poplar --- FTIR --- contaminants --- by-products --- lignin valorization --- lignin applications --- 3D printing --- electrochemical material --- medical application --- drying effect --- cellulose --- hornification --- porosity --- bioethanol --- economic analysis --- hand sanitiser --- oil palm empty fruit bunch (OPEFB) --- simultaneous saccharification and fermentation --- SuperPro Designer® --- renewable fuel --- high-density fuel --- α-pinene dimerization --- turpentine --- stannic chloride molten salt hydrates --- xylooligosaccharides --- autohydrolysis --- sweet sorghum bagasse --- isobutanol --- biorefinery --- metabolic engineering --- biomass utilization --- aqueous biphasic system --- dilute acid hydrolysate --- furfural production --- solvent extraction --- response surface methodology --- biomass fractionation --- bioproducts
Choose an application
Zezhu lived a simple life in a small house in the country. One day he met a sick deaf girl named Xiangshu. Having killed a man who was attempting to rape her, she fled to the country to escape arrest. Zezhu took her in and gradually they learned to trust each other. Unresolved conflicts in his relationship with his late mother then complicated his feelings for Xiangshu. (KOFIC)
Listing 1 - 7 of 7 |
Sort by
|