Listing 1 - 6 of 6 |
Sort by
|
Choose an application
"Creating a rigorous mathematical theory of randomness is far from being complete, even in the classical case. Interrelation of Classical and Quantum Randomness rectifies this and introduces mathematical formalisms of classical and quantum probability and randomness with brief discussion of their interrelation and interpretational and foundational issues. The book presents the essentials of classical approaches to randomness, enlightens their successes and problems, and then proceeds to essentials of quantum randomness. Its wide-ranging and comprehensive scope makes it suitable for researchers in mathematical physics, probability and statistics at any level"--
Probabilities. --- Quantum theory. --- Mathematical physics. --- Probabilités --- Théorie quantique --- Physique mathématique
Choose an application
The recent years have been characterized by stormy social protests throughout the world. These protests have some commonalities, but at the same time, their sociopolitical, psychological, and economic contexts differ essentially. An important class of such protests is known as color revolutions. The analysis of these events in social and political literature is characterized by huge diversity of opinions. We remark that the sociopolitical perturbations under consideration are characterized by the cascade dynamics leading to the exponential amplification of coherent social actions. In quantum physics, such exponential and coherent amplification is the basic feature of laser's functioning. (Laser is acronym for light amplification by stimulated emission of radiation). In this book we explore the theory of laser to model aforementioned waves of social protests, from color revolutions to Brexit and Trump's election. We call such social processes Stimulated Amplification of Social Actions (SASA), but to keep closer to the analogy with physics we merely operate with the term social laser.
Social problems --- Quantum computing. --- Field theory (Physics) --- Mathematical models.
Choose an application
The quantum information revolution has had a huge impact not only on quantum technologies, including quantum computing and cryptography, but also on the foundations of quantum mechanics. This book presents the information viewpoint on the foundations of quantum physics by highlighting the role of complementarity and contextuality and coupling the ideas of the fathers of quantum mechanics, Bohr and Einstein, with the modern quantum information framework. The classical-quantum dilemma is resolved through an appeal to the Bild conception of scientific theories established in the 19th century by Hertz and Boltzmann. Bell inequalities are treated from the complementarity-contextuality viewpoint, supporting the attempts to discard nonlocality from quantum physics. Philosophical aspects of the topic are explored from a physicist's perspective, balancing accessibility with scientific rigour. This unique approach to quantum foundations will be of interest to graduates, Ph.D. students and researchers in fields ranging from quantum information to philosophy.
Physics --- Quantum theory. --- Philosophy.
Choose an application
Written by world experts in the foundations of quantum mechanics and its applications to social science, this book shows how elementary quantum mechanical principles can be applied to decision-making paradoxes in psychology and used in modelling information in finance and economics. The book starts with a thorough overview of some of the salient differences between classical, statistical and quantum mechanics. It presents arguments on why quantum mechanics can be applied outside of physics and defines quantum social science. The issue of the existence of quantum probabilistic effects in psychology, economics and finance is addressed and basic questions and answers are provided. Aimed at researchers in economics and psychology, as well as physics, basic mathematical preliminaries and elementary concepts from quantum mechanics are defined in a self-contained way.
Social sciences --- Quantum theory --- Mathematical models --- Quantum theory. --- Quantum dynamics --- Quantum mechanics --- Quantum physics --- Physics --- Mechanics --- Thermodynamics --- Mathematical models. --- Social sciences - Mathematical models
Choose an application
This 2010 book was the first devoted to the theory of p-adic wavelets and pseudo-differential equations in the framework of distribution theory. This relatively recent theory has become increasingly important in the last decade with exciting applications in a variety of fields, including biology, image analysis, psychology, and information science. p-Adic mathematical physics also plays an important role in quantum mechanics and quantum field theory, the theory of strings, quantum gravity and cosmology, and solid state physics. The authors include many new results, some of which constitute new areas in p-adic analysis related to the theory of distributions, such as wavelet theory, the theory of pseudo-differential operators and equations, asymptotic methods, and harmonic analysis. Any researcher working with applications of p-adic analysis will find much of interest in this book. Its extended introduction and self-contained presentation also make it accessible to graduate students approaching the theory for the first time.
p-adic numbers. --- p-adic analysis. --- Distribution (Probability theory) --- Distribution functions --- Frequency distribution --- Characteristic functions --- Probabilities --- Analysis, p-adic --- Algebra --- Calculus --- Geometry, Algebraic --- Numbers, p-adic --- Number theory --- p-adic analysis
Choose an application
Starting from physical motivations and leading to practical applications, this book provides an interdisciplinary perspective on the cutting edge of ultrametric pseudodifferential equations. It shows the ways in which these equations link different fields including mathematics, engineering, and geophysics. In particular, the authors provide a detailed explanation of the geophysical applications of p-adic diffusion equations, useful when modeling the flows of liquids through porous rock. p-adic wavelets theory and p-adic pseudodifferential equations are also presented, along with their connections to mathematical physics, representation theory, the physics of disordered systems, probability, number theory, and p-adic dynamical systems. Material that was previously spread across many articles in journals of many different fields is brought together here, including recent work on the van der Put series technique. This book provides an excellent snapshot of the fascinating field of ultrametric pseudodifferential equations, including their emerging applications and currently unsolved problems.
Listing 1 - 6 of 6 |
Sort by
|