Listing 1 - 6 of 6 |
Sort by
|
Choose an application
The Lebesgue integral is an essential tool in the fields of analysis and stochastics and for this reason, in many areas where mathematics is applied. This textbook is a concise, lecture-tested introduction to measure and integration theory. It addresses the important topics of this theory and presents additional results which establish connections to other areas of mathematics. The arrangement of the material should allow the adoption of this textbook in differently composed Bachelor programmes.
Mathematics. --- Measure and Integration. --- Mathématiques --- Calculus --- Mathematics --- Physical Sciences & Mathematics --- Measure theory. --- Math --- Science --- Integrals. --- Calculus, Integral --- Lebesgue measure --- Measurable sets --- Measure of a set --- Algebraic topology --- Integrals, Generalized --- Measure algebras --- Rings (Algebra)
Choose an application
Dieses Lehrbuch beschäftigt sich mit stochastischen Prozessen in der Zeit. Diese Klasse von mathematischen Modellen hat vielfältige Anwendungen auf Problemstellungen, in denen man Zufallsphänomene in ihrer zeitlichen Entwicklung erfassen möchte. Im umfangreichen Gebiet der stochastischen Prozesse konzentrieren wir uns auf Themen, die sowohl mathematisch als auch von den Anwendungen her besonders bedeutungsvoll sind. Ausgangspunkt ist die Theorie der bedingten Erwartungen und der Martingale, die die Stochastik in der zweiten Hälfte des 20. Jahrhunderts neu prägte; hier orientiert man sich an der Vorstellung eines fairen Spiels. Demgegenüber beschreiben Markovketten zufällige Entwicklungen, bei denen die Verteilung des zukünftigen Verlaufs nur vom gegenwärtigen Zustand abhängt. Bei den zeitkontinuierlichen Prozessen steht die Brownsche Bewegung an erster Stelle. Zusammen mit den Poissonschen Punktprozessen und Lévyprozessen befindet sie sich an der Schnittstelle zwischen Martingalen und Markovprozessen. Ein abschließendes Kapitel beschäftigt sich mit zeitkontinuierlichen Markovprozessen und ihren Generatoren, bis hin zu Fellerprozessen. Das Buch versteht sich als einführender Text, der an fortgeschrittene Themen wie etwa die stochastische Analysis heranführt. Grundlegende Sätze aus der Maß- und Integrationstheorie werden benutzt, dabei stehen immer die probabilistischen Aspekte im Vordergrund. Damit ist das Buch für das fortgeschrittene Bachelor- oder das einführende Masterstudium der Mathematik geeignet.
Choose an application
In der modernen Stochastik werden Wahrscheinlichkeiten im Zusammenhang mit Zufallsvariablen gedacht. Damit macht dieses Lehrbuch Ernst, schon die Welt uniform verteilter Zufallsgrößen wird dann farbig. Das Konzept der Zufallsgrößen prägt den Aufbau des Buches. Es enthält neue Beispiele und dringt auf knappem Raum weit in das Rechnen mit Zufallsvariablen vor, ohne Techniken aus der Maß- und Integrationstheorie zu bemühen. Die wichtigsten diskreten und kontinuierlichen Verteilungen werden erklärt, und der Umgang mit Erwartungswert, Varianz und bedingten Verteilungen wird vermittelt. Der Text reicht bis zum Zentralen Grenzwertsatz (samt Beweis) und zu den Anfängen der Markovketten. Je ein Kapitel ist Ideen der Statistik und der Informationstheorie gewidmet. Damit liefert das Buch Orientierung und Material für verschiedene Varianten 2- oder 4-stündiger einführender Lehrveranstaltungen.
Choose an application
Choose an application
Choose an application
Listing 1 - 6 of 6 |
Sort by
|