Narrow your search
Listing 1 - 7 of 7
Sort by

Book
Deep learning
Author:
ISBN: 9780262537551 0262537559 9780262354899 0262354896 026235490X Year: 2019 Publisher: Cambridge, Massachusetts: MIT Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"Artificial Intelligence is a disruptive technology across business and society. There are three long-term trends driving this AI revolution: the emergence of Big Data, the creation of cheaper and more powerful computers, and development of better algorithms for processing an learning from data. Deep learning is the subfield of Artificial Intelligence that focuses on creating large neural network models that are capable of making accurate data driven decisions. Modern neural networks are the most powerful computational models we have for analyzing massive and complex datasets, and consequently deep learning is ideally suited to take advantage of the rapid growth in Big Data and computational power. In the last ten years, deep learning has become the fundamental technology in computer vision systems, speech recognition on mobile phones, information retrieval systems, machine translation, game AI, and self-driving cars. It is set to have a massive impact in healthcare, finance, and smart cities over the next years. This book is designed to give an accessible and concise, but also comprehensive, introduction to the field of Deep Learning. The book explains what deep learning is, how the field has developed, what deep learning can do, and also discusses how the field is likely to develop in the next 10 years. Along the way, the most important neural network architectures are described, including autoencoders, recurrent neural networks, long short-term memory networks, convolutional networks, and more recent developments such as Generative Adversarial Networks, transformer networks, and capsule networks. The book also covers the two more important algorithms for training a neural network, the gradient descent algorithm and Backpropagation"--


Book
Data science
Authors: ---
ISBN: 9780262535434 0262535432 Year: 2018 Publisher: Cambridge (Mass.): MIT Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges."--


Book
Data science
Authors: ---
ISBN: 0262347032 0262347024 9780262347020 9780262347037 9780262535434 0262535432 Year: 2018 Publisher: Cambridge, MA : The MIT Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges. The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges. It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.--


Book
Fundamentals of machine learning for predictive data analytics : algorithms, worked examples, and case studies
Authors: --- ---
ISBN: 9780262029445 0262029448 Year: 2015 Publisher: Cambridge (Massachusetts): MIT Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals."--


Book
Fundamentals of machine learning for predictive data analytics : algorithms, worked examples, and case studies
Authors: --- ---
ISBN: 9780262044691 Year: 2020 Publisher: Cambridge, Massachusetts : The MIT Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning. The book is accessible, offering nontechnical explanations of the ideas underpinning each approach before introducing mathematical models and algorithms. It is focused and deep, providing students with detailed knowledge on core concepts, giving them a solid basis for exploring the field on their own. Both early chapters and later case studies illustrate how the process of learning predictive models fits into the broader business context. The two case studies describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book can be used as a textbook at the introductory level or as a reference for professionals." [Publisher]


Book
データアナリティクスのための機械学習入門 : アルゴリズム・実例・ケーススタディ
Authors: --- --- --- --- --- et al.
ISBN: 4764972905 Year: 2022 Publisher: 近代科学社,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Digital
Salience : Multidisciplinary Perspectives on its Function in Discourse
Authors: --- --- --- --- --- et al.
ISBN: 9783110241020 9783110240726 Year: 2011 Publisher: Berlin ;; Boston De Gruyter Mouton

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Linguistics

Listing 1 - 7 of 7
Sort by