Narrow your search

Library

KU Leuven (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

AP (1)

FARO (1)

More...

Resource type

book (5)

digital (1)


Language

English (6)


Year
From To Submit

2020 (4)

2014 (2)

Listing 1 - 6 of 6
Sort by

Book
Offshore Energy Structures : For Wind Power, Wave Energy and Hybrid Marine Platforms
Author:
ISBN: 3319121758 331912174X Year: 2014 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides all the key information needed to design offshore structures for renewable energy applications. Suitable for practicing engineers and students, the author conveys design principles and best practices in a clear, concise manner, eschewing complicated mathematical detail. The text connects underlying scientific theory with industry standards and practical implementation issues for offshore wind turbines, wave energy converters and current turbines. Combined concepts such as wave-wind energy platforms are discussed, as well. Coverage of design codes and numerical tools ensures the usefulness of this resource for all those studying and working in the rapidly expanding field of offshore renewable energy.    .


Book
Assessment and Nonlinear Modeling of Wave, Tidal and Wind Energy Converters and Turbines
Author:
ISBN: 3039369121 303936913X Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Digital
Offshore Energy Structures : For Wind Power, Wave Energy and Hybrid Marine Platforms
Author:
ISBN: 9783319121758 Year: 2014 Publisher: Cham Springer International Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides all the key information needed to design offshore structures for renewable energy applications. Suitable for practicing engineers and students, the author conveys design principles and best practices in a clear, concise manner, eschewing complicated mathematical detail. The text connects underlying scientific theory with industry standards and practical implementation issues for offshore wind turbines, wave energy converters and current turbines. Combined concepts such as wave-wind energy platforms are discussed, as well. Coverage of design codes and numerical tools ensures the usefulness of this resource for all those studying and working in the rapidly expanding field of offshore renewable energy.    .


Book
Assessment and Nonlinear Modeling of Wave, Tidal and Wind Energy Converters and Turbines
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue “Assessment and Nonlinear Modeling of Wave, Tidal, and Wind Energy Converters and Turbines” contributes original research to stimulate the continuing progress of the offshore renewable energy (ORE) field, with a focus on state-of-the-art numerical approaches developed for the design and analysis of ORE devices. Particularly, this collection provides new methodologies, analytical/numerical tools, and theoretical methods that deal with engineering problems in the ORE field of wave, wind, and current structures. This Special Issue covers a wide range of multidisciplinary aspects, such as the 1) study of generalized interaction wake model systems with elm variation for offshore wind farms; 2) a flower pollination method based on global maximum power point tracking strategy for point-absorbing type wave energy converters; 3) performance optimization of a Kirsten–Boeing turbine using a metamodel based on neural networks coupled with CFD; 4) proposal of a novel semi-submersible floating wind turbine platform composed of inclined columns and multi-segmented mooring lines; 5) reduction of tower fatigue through blade back twist and active pitch-to-stall control strategy for a semi-submersible floating offshore wind turbine; 6) assessment of primary energy conversion of a closed-circuit OWC wave energy converter; 7) development and validation of a wave-to-wire model for two types of OWC wave energy converters; 8) assessment of a hydrokinetic energy converter based on vortex-induced angular oscillations of a cylinder; 9) application of wave-turbulence decomposition methods on a tidal energy site assessment; 10) parametric study for an oscillating water column wave energy conversion system installed on a breakwater; 11) optimal dimensions of a semisubmersible floating platform for a 10 MW wind turbine; 12) fatigue life assessment for power cables floating in offshore wind turbines.

Keywords

History of engineering & technology --- off-shore wind farms (OSWFs) --- wake model --- wind turbine (WT) --- Extreme Learning Machine (ELM) --- wind power (WP) --- large-eddy simulation (LES) --- point-absorbing --- wave energy converter (WEC) --- maximum power point tracking (MPPT) --- flower pollination algorithm (FPA) --- power take-off (PTO) --- hill-climbing method --- Kirsten–Boeing --- vertical axis turbine --- optimization --- neural nets --- Tensorflow --- ANSYS CFX --- metamodeling --- FOWT --- multi-segmented mooring line --- inclined columns --- semi-submersible --- AFWT --- floating offshore wind turbine (FOWT) --- pitch-to-stall --- blade back twist --- tower fore–aft moments --- negative damping --- blade flapwise moment --- tower axial fatigue life --- wave energy --- oscillating water column --- tank testing --- valves --- air compressibility --- air turbine --- wave-to-wire model --- energy harnessing --- energy converter --- flow-induced oscillations --- vortex-induced vibration --- flow–structure interaction --- hydrodynamics --- vortex shedding --- cylinder wake --- tidal energy --- site assessment --- wave-current interaction --- turbulence --- integral length scales --- wave-turbulence decomposition --- OWC --- wave power converting system --- parametric study --- caisson breakwater application --- floating offshore wind turbines --- frequency domain model --- semisubmersible platform --- 10 MW wind turbines --- large floating platform --- platform optimization --- wind energy --- floating offshore wind turbine --- dynamic analysis --- fatigue life assessment --- flexible power cables --- Daguragu / Kalkaringi / Wave Hill (Central NT SE52-08)


Book
Assessment and Nonlinear Modeling of Wave, Tidal and Wind Energy Converters and Turbines
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue “Assessment and Nonlinear Modeling of Wave, Tidal, and Wind Energy Converters and Turbines” contributes original research to stimulate the continuing progress of the offshore renewable energy (ORE) field, with a focus on state-of-the-art numerical approaches developed for the design and analysis of ORE devices. Particularly, this collection provides new methodologies, analytical/numerical tools, and theoretical methods that deal with engineering problems in the ORE field of wave, wind, and current structures. This Special Issue covers a wide range of multidisciplinary aspects, such as the 1) study of generalized interaction wake model systems with elm variation for offshore wind farms; 2) a flower pollination method based on global maximum power point tracking strategy for point-absorbing type wave energy converters; 3) performance optimization of a Kirsten–Boeing turbine using a metamodel based on neural networks coupled with CFD; 4) proposal of a novel semi-submersible floating wind turbine platform composed of inclined columns and multi-segmented mooring lines; 5) reduction of tower fatigue through blade back twist and active pitch-to-stall control strategy for a semi-submersible floating offshore wind turbine; 6) assessment of primary energy conversion of a closed-circuit OWC wave energy converter; 7) development and validation of a wave-to-wire model for two types of OWC wave energy converters; 8) assessment of a hydrokinetic energy converter based on vortex-induced angular oscillations of a cylinder; 9) application of wave-turbulence decomposition methods on a tidal energy site assessment; 10) parametric study for an oscillating water column wave energy conversion system installed on a breakwater; 11) optimal dimensions of a semisubmersible floating platform for a 10 MW wind turbine; 12) fatigue life assessment for power cables floating in offshore wind turbines.

Keywords

off-shore wind farms (OSWFs) --- wake model --- wind turbine (WT) --- Extreme Learning Machine (ELM) --- wind power (WP) --- large-eddy simulation (LES) --- point-absorbing --- wave energy converter (WEC) --- maximum power point tracking (MPPT) --- flower pollination algorithm (FPA) --- power take-off (PTO) --- hill-climbing method --- Kirsten–Boeing --- vertical axis turbine --- optimization --- neural nets --- Tensorflow --- ANSYS CFX --- metamodeling --- FOWT --- multi-segmented mooring line --- inclined columns --- semi-submersible --- AFWT --- floating offshore wind turbine (FOWT) --- pitch-to-stall --- blade back twist --- tower fore–aft moments --- negative damping --- blade flapwise moment --- tower axial fatigue life --- wave energy --- oscillating water column --- tank testing --- valves --- air compressibility --- air turbine --- wave-to-wire model --- energy harnessing --- energy converter --- flow-induced oscillations --- vortex-induced vibration --- flow–structure interaction --- hydrodynamics --- vortex shedding --- cylinder wake --- tidal energy --- site assessment --- wave-current interaction --- turbulence --- integral length scales --- wave-turbulence decomposition --- OWC --- wave power converting system --- parametric study --- caisson breakwater application --- floating offshore wind turbines --- frequency domain model --- semisubmersible platform --- 10 MW wind turbines --- large floating platform --- platform optimization --- wind energy --- floating offshore wind turbine --- dynamic analysis --- fatigue life assessment --- flexible power cables --- Daguragu / Kalkaringi / Wave Hill (Central NT SE52-08)


Book
Assessment and Nonlinear Modeling of Wave, Tidal and Wind Energy Converters and Turbines
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue “Assessment and Nonlinear Modeling of Wave, Tidal, and Wind Energy Converters and Turbines” contributes original research to stimulate the continuing progress of the offshore renewable energy (ORE) field, with a focus on state-of-the-art numerical approaches developed for the design and analysis of ORE devices. Particularly, this collection provides new methodologies, analytical/numerical tools, and theoretical methods that deal with engineering problems in the ORE field of wave, wind, and current structures. This Special Issue covers a wide range of multidisciplinary aspects, such as the 1) study of generalized interaction wake model systems with elm variation for offshore wind farms; 2) a flower pollination method based on global maximum power point tracking strategy for point-absorbing type wave energy converters; 3) performance optimization of a Kirsten–Boeing turbine using a metamodel based on neural networks coupled with CFD; 4) proposal of a novel semi-submersible floating wind turbine platform composed of inclined columns and multi-segmented mooring lines; 5) reduction of tower fatigue through blade back twist and active pitch-to-stall control strategy for a semi-submersible floating offshore wind turbine; 6) assessment of primary energy conversion of a closed-circuit OWC wave energy converter; 7) development and validation of a wave-to-wire model for two types of OWC wave energy converters; 8) assessment of a hydrokinetic energy converter based on vortex-induced angular oscillations of a cylinder; 9) application of wave-turbulence decomposition methods on a tidal energy site assessment; 10) parametric study for an oscillating water column wave energy conversion system installed on a breakwater; 11) optimal dimensions of a semisubmersible floating platform for a 10 MW wind turbine; 12) fatigue life assessment for power cables floating in offshore wind turbines.

Keywords

History of engineering & technology --- off-shore wind farms (OSWFs) --- wake model --- wind turbine (WT) --- Extreme Learning Machine (ELM) --- wind power (WP) --- large-eddy simulation (LES) --- point-absorbing --- wave energy converter (WEC) --- maximum power point tracking (MPPT) --- flower pollination algorithm (FPA) --- power take-off (PTO) --- hill-climbing method --- Kirsten–Boeing --- vertical axis turbine --- optimization --- neural nets --- Tensorflow --- ANSYS CFX --- metamodeling --- FOWT --- multi-segmented mooring line --- inclined columns --- semi-submersible --- AFWT --- floating offshore wind turbine (FOWT) --- pitch-to-stall --- blade back twist --- tower fore–aft moments --- negative damping --- blade flapwise moment --- tower axial fatigue life --- wave energy --- oscillating water column --- tank testing --- valves --- air compressibility --- air turbine --- wave-to-wire model --- energy harnessing --- energy converter --- flow-induced oscillations --- vortex-induced vibration --- flow–structure interaction --- hydrodynamics --- vortex shedding --- cylinder wake --- tidal energy --- site assessment --- wave-current interaction --- turbulence --- integral length scales --- wave-turbulence decomposition --- OWC --- wave power converting system --- parametric study --- caisson breakwater application --- floating offshore wind turbines --- frequency domain model --- semisubmersible platform --- 10 MW wind turbines --- large floating platform --- platform optimization --- wind energy --- floating offshore wind turbine --- dynamic analysis --- fatigue life assessment --- flexible power cables --- Daguragu / Kalkaringi / Wave Hill (Central NT SE52-08)

Listing 1 - 6 of 6
Sort by