Listing 1 - 10 of 17 | << page >> |
Sort by
|
Choose an application
Embedded computer systems. --- Quality of service (Computer networks) --- Virtual computer systems. --- Machine systems, Virtual --- Virtual machine systems --- Computer systems --- Digital computer simulation --- QoS (Computer networks) --- Computer networks --- Embedded systems (Computer systems) --- Architecture Analysis and Design Language
Choose an application
Drone aircraft --- Vehicular ad hoc networks (Computer networks) --- Control systems. --- Intelligent vehicular ad hoc networks (Computer networks) --- Inter-vehicle ad-hoc networks --- VANETs --- Vehicluar networks (Computer networks) --- Ad hoc networks (Computer networks) --- Intelligent transportation systems --- Flight control
Choose an application
Heterogeneous computing. --- Wireless communication systems --- Automatic control. --- Communication systems, Wireless --- Wireless data communication systems --- Wireless information networks --- Wireless telecommunication systems --- Telecommunication systems --- Heterogeneous processing (Computers) --- High performance computing --- Parallel processing (Electronic computers)
Choose an application
As an important future network architecture, virtual network architecture has received extensive attention. Virtual network embedding (VNE) is one of the core services of network virtualization (NV). It provides solutions for various network applications from the perspective of virtual network resource allocation. The Internet aims to provide global users with comprehensive coverage. The network function requests of hundreds of millions of end users have brought great pressure to the underlying network architecture. VNE algorithm can provide effective support for the reasonable and efficient allocation of network resources, so as to alleviate the pressure off the Internet. At present, a distinctive feature of the Internet environment is that the quality of service (QoS) requirements of users are differentiated. Different regions, different times, and different users have different network function requirements. Therefore, network resources need to be reasonably allocated according to users' QoS requirements to avoid the waste of network resources. In this book, based on the analysis of the principle of VNE algorithm, we provide a VNE scheme for users with differentiated QoS requirements. We summarize the common user requirements into four categories: security awareness, service awareness, energy awareness, and load balance, and then introduce the specific implementation methods of various differentiated QoS algorithms. This book provides a variety of VNE solutions, including VNE algorithms for single physical domain, VNE algorithms for across multiple physical domains, VNE algorithms based on heuristic method, and VNE algorithms based on machine learning method.
Telecommunication technology --- Mass communications --- Computer architecture. Operating systems --- Artificial intelligence. Robotics. Simulation. Graphics --- tekstverwerking --- KI (kunstmatige intelligentie) --- computernetwerken --- communicatietechnologie --- AI (artificiële intelligentie)
Choose an application
To provide ubiquitous and various services, 6G networks tend to be more comprehensive and multidimensional by integrating current terrestrial networks with space-/air-based information networks and marine information networks; then, heterogeneous network resources, as well as different types of users and data, will be also integrated. Driven by the exponentially growing demands of multimedia data traffic and computation-heavy applications, 6G heterogenous networks are expected to achieve a high QoS with ultra-reliability and low latency. In response, resource allocation has been considered an important factor that can improve 6G performance directly by configuring heterogeneous communication, computing and caching resources effectively and efficiently. The book addresses a range of technical issues in cooperative resource allocation and information sharing for the future 6G heterogenous networks, from the terrestrial ultra-dense networks and space-based networks to the integrated satellite-terrestrial networks, as well as introducing the effects of cooperative behavior among mobile users on increasing capacity, trustworthiness and privacy. For the cooperative transmission in heterogeneous networks, the authors commence with the traffic offloading problems in terrestrial ultra-dense networks, and the cognitive and cooperative mechanisms in heterogeneous space-based networks, the stability analysis of which is also provided. Moreover, for the cooperative transmission in integrated satellite-terrestrial networks, the authors present a pair of dynamic and adaptive resource allocation strategies for traffic offloading, cooperative beamforming and traffic prediction based cooperative transmission. Later, the authors discuss the cooperative computation and caching resource allocation in heterogeneous networks, with the highlight of providing our current studies on the game theory, auction theory and deep reinforcement learning based approaches. Meanwhile, the authors introduce the cooperative resource and information sharing among users, in which capacity oriented-, trustworthiness oriented-, and privacy oriented cooperative mechanisms are investigated. Finally, the conclusion is drawn.
Computer architecture. Operating systems --- Computer. Automation --- informatica --- mobiele communicatie
Choose an application
Relying on unmanned autonomous flight control programs, unmanned aerial vehicles (UAVs) equipped with radio communication devices have been actively developed around the world. Given their low cost, flexible maneuvering and unmanned operation, UAVs have been widely used in both civilian operations and military missions, including environmental monitoring, emergency communications, express distribution, even military surveillance and attacks, for example. Given that a range of standards and protocols used in terrestrial wireless networks are not applicable to UAV networks, and that some practical constraints such as battery power and no-fly zone hinder the maneuverability capability of a single UAV, we need to explore advanced communication and networking theories and methods for the sake of supporting future ultra-reliable and low-latency applications. Typically, the full potential of UAV network's functionalities can be tapped with the aid of the cooperation of multiple drones relying on their ad hoc networking, in-network communications and coordinated control. Furthermore, some swarm intelligence models and algorithms conceived for dynamic negotiation, path programming, formation flight and task assignment of multiple cooperative drones are also beneficial in terms of extending UAV's functionalities and coverage, as well as of increasing their efficiency. We call the networking and cooperation of multiple drones as the terminology 'flying ad hoc network (FANET)', and there indeed are numerous new challenges to be overcome before the idespread of so-called heterogeneous FANETs. In this book, we examine a range of technical issues in FANETs, from physical-layer channel modeling to MAC-layer resource allocation, while also introducing readers to UAV aided mobile edge computing techniques.
Choose an application
This book mainly discusses the most important issues in artificial intelligence-aided future networks, such as applying different ML approaches to investigate solutions to intelligently monitor, control and optimize networking. The authors focus on four scenarios of successfully applying machine learning in network space. It also discusses the main challenge of network traffic intelligent awareness and introduces several machine learning-based traffic awareness algorithms, such as traffic classification, anomaly traffic identification and traffic prediction. The authors introduce some ML approaches like reinforcement learning to deal with network control problem in this book. Traditional works on the control plane largely rely on a manual process in configuring forwarding, which cannot be employed for today's network conditions. To address this issue, several artificial intelligence approaches for self-learning control strategies are introduced. In addition, resource management problems are ubiquitous in the networking field, such as job scheduling, bitrate adaptation in video streaming and virtual machine placement in cloud computing. Compared with the traditional with-box approach, the authors present some ML methods to solve the complexity network resource allocation problems. Finally, semantic comprehension function is introduced to the network to understand the high-level business intent in this book. With Software-Defined Networking (SDN), Network Function Virtualization (NFV), 5th Generation Wireless Systems (5G) development, the global network is undergoing profound restructuring and transformation. However, with the improvement of the flexibility and scalability of the networks, as well as the ever-increasing complexity of networks, makes effective monitoring, overall control, and optimization of the network extremely difficult. Recently, adding intelligence to the control plane through AI&ML become a trend and a direction of network development This book's expected audience includes professors, researchers, scientists, practitioners, engineers, industry managers, and government research workers, who work in the fields of intelligent network. Advanced-level students studying computer science and electrical engineering will also find this book useful as a secondary textbook. .
Artificial intelligence. --- AI (Artificial intelligence) --- Artificial thinking --- Electronic brains --- Intellectronics --- Intelligence, Artificial --- Intelligent machines --- Machine intelligence --- Thinking, Artificial --- Bionics --- Cognitive science --- Digital computer simulation --- Electronic data processing --- Logic machines --- Machine theory --- Self-organizing systems --- Simulation methods --- Fifth generation computers --- Neural computers --- Wireless communication systems. --- Mobile communication systems. --- Computer Communication Networks. --- Wireless and Mobile Communication. --- Artificial Intelligence. --- Vehicles --- Vehicular communication systems --- Radio --- Wireless communication systems --- Communication systems, Wireless --- Wireless data communication systems --- Wireless information networks --- Wireless telecommunication systems --- Telecommunication systems --- Communication systems --- Computer communication systems. --- Communication systems, Computer --- Computer communication systems --- Data networks, Computer --- ECNs (Electronic communication networks) --- Electronic communication networks --- Networks, Computer --- Teleprocessing networks --- Data transmission systems --- Digital communications --- Electronic systems --- Information networks --- Telecommunication --- Cyberinfrastructure --- Network computers --- Distributed processing
Choose an application
Embedded computer systems. --- Quality of service (Computer networks) --- Virtual computer systems. --- Machine systems, Virtual --- Virtual machine systems --- Computer systems --- Digital computer simulation --- QoS (Computer networks) --- Computer networks --- Embedded systems (Computer systems) --- Architecture Analysis and Design Language
Choose an application
Choose an application
This book targets major issues in terrestrial-satellite communication networks and presents the solutions. While the terrestrial networks can achieve high-speed data service at low cost, satellite based access is one way to complement terrestrial based networks to ensure ubiquitous, 100% geographic coverage. The coexistence and cooperation between terrestrial and satellite networks are of great potential in future communication networks, and satellite radio access networks has already been considered in the fifth-generation (5G) networks to be supported for phase 2. Therefore, it is important to study the architectures of terrestrial-satellite networks, as well as the possible techniques and challenges. The authors introduce the technique of beamforming in satellite communication systems, which is an efficient transmitting method for multiple access, and they discuss the main challenges as well as prospective applications. The authors introduce possible methods for interference cancelation reception in terrestrial-satellite communication networks when reusing the frequency band between the two networks. Due to the limitation of spectrum resources, spectrum sharing will become one of the important issues in terrestrial-satellite communication networks. The problems of spectrum coexistence between GEO and Terrestrial Systems and between GEO and NEGO systems are also discussed. Finally, taking both the two system into consideration, the resource allocation problem will be more complex due to the coupling between resources and the interference. Based on this, the authors propose several resource allocation schemes in different scenarios of terrestrial-satellite communication networks, which can optimize the capacity performance of the system. The expected audience for this book includes (but not limited to) graduate students, professors, researchers, scientists, practitioners, engineers, industry managers, and government researchers working in the field of satellite communications and networks. The expected audience for this book includes (but not limited to) graduate students, professors, researchers, scientists, practitioners, engineers, industry managers, and government researchers working in the field of satellite communications and networks.
Engineering. --- Computer communication systems. --- Electrical engineering. --- Communications Engineering, Networks. --- Computer Communication Networks. --- Artificial satellites in telecommunication. --- Wireless communication systems. --- Communication systems, Wireless --- Wireless data communication systems --- Wireless information networks --- Wireless telecommunication systems --- Telecommunication systems --- Communication satellites --- Communications-relay satellites --- Communications satellites --- Global satellite communications systems --- Satellite communication systems --- Telecommunication satellites --- Telecommunications satellites --- Telstar satellites --- Telecommunication --- Telecommunication. --- Electric communication --- Mass communication --- Telecom --- Telecommunication industry --- Telecommunications --- Communication --- Information theory --- Telecommuting --- Electric engineering --- Engineering --- Communication systems, Computer --- Computer communication systems --- Data networks, Computer --- ECNs (Electronic communication networks) --- Electronic communication networks --- Networks, Computer --- Teleprocessing networks --- Data transmission systems --- Digital communications --- Electronic systems --- Information networks --- Cyberinfrastructure --- Electronic data processing --- Network computers --- Distributed processing
Listing 1 - 10 of 17 | << page >> |
Sort by
|