Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

UGent (2)

ULB (2)

ULiège (2)

More...

Resource type

book (8)


Language

English (8)


Year
From To Submit

2017 (4)

2015 (4)

Listing 1 - 8 of 8
Sort by

Book
Regulatory potential of post-translational modifications in bacteria
Author:
ISBN: 2889196100 Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Regulatory potential of post-translational modifications in bacteria
Authors: --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Post-translational modifications (PTMs) are widely employed by all living organisms to control the enzymatic activity, localization or stability of proteins on a much shorter time scale than the transcriptional control. In eukarya, global analyses consistently reveal that proteins are very extensively phosphorylated, acetylated and ubiquitylated. Glycosylation and methylation are also very common, and myriad other PTMs, most with a proven regulatory potential, are being discovered continuously. The emergent picture is that PTM sites on a single protein are not independent; modification of one residue often affects (positively or negatively) modification of other sites on the same protein. The best example of this complex behavior is the histone “bar-code” with very extensive cross-talk between phosphorylation, acetylation and methylation sites. Traditionally it was believed that large networks of PTMs exist only in complex eukaryal cells, which exploit them for coordination and fine-tuning of various cellular functions. PTMs have also been detected in bacteria, but the early examples focused on a few important regulatory events, based mainly on protein phosphorylation. The global importance (and abundance) of PTMs in bacterial physiology was systematically underestimated. In recent years, global studies have reported large datasets of phosphorylated, acetylated and glycosylated proteins in bacteria. Other modifications of bacterial proteins have been recently described: pupylation, methylation, sirtuin acetylation, lipidation, carboxylation and bacillithiolation. As the landscape of PTMs in bacterial cells is rapidly expanding, primarily due to advances of detection methods in mass spectrometry, our research field is adapting to comprehend the potential impact of these modifications on the cellular physiology. The field of protein phosphorylation, especially of the Ser/Thr/Tyr type, has been profoundly transformed. We have become aware that bacterial kinases phosphorylate many protein substrates and thus constitute regulatory nodes with potential for signal integration. They also engage in cross-talk and eukaryal-like mutual activation cascades. The regulatory potential of protein acetylation and glycosylation in bacteria is also rapidly emerging, and the cross-talk between acetylation and phosphorylation has been documented. This topic deals with the complexity of the PTM landscape in bacteria, and focus in particular on the physiological roles that PTMs play and methods to study them. The topic is associated to the 1st International Conference on Post-Translational Modifications in Bacteria (September 9-10, 2014, Göttingen, Germany).


Book
Regulatory potential of post-translational modifications in bacteria
Authors: --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Post-translational modifications (PTMs) are widely employed by all living organisms to control the enzymatic activity, localization or stability of proteins on a much shorter time scale than the transcriptional control. In eukarya, global analyses consistently reveal that proteins are very extensively phosphorylated, acetylated and ubiquitylated. Glycosylation and methylation are also very common, and myriad other PTMs, most with a proven regulatory potential, are being discovered continuously. The emergent picture is that PTM sites on a single protein are not independent; modification of one residue often affects (positively or negatively) modification of other sites on the same protein. The best example of this complex behavior is the histone “bar-code” with very extensive cross-talk between phosphorylation, acetylation and methylation sites. Traditionally it was believed that large networks of PTMs exist only in complex eukaryal cells, which exploit them for coordination and fine-tuning of various cellular functions. PTMs have also been detected in bacteria, but the early examples focused on a few important regulatory events, based mainly on protein phosphorylation. The global importance (and abundance) of PTMs in bacterial physiology was systematically underestimated. In recent years, global studies have reported large datasets of phosphorylated, acetylated and glycosylated proteins in bacteria. Other modifications of bacterial proteins have been recently described: pupylation, methylation, sirtuin acetylation, lipidation, carboxylation and bacillithiolation. As the landscape of PTMs in bacterial cells is rapidly expanding, primarily due to advances of detection methods in mass spectrometry, our research field is adapting to comprehend the potential impact of these modifications on the cellular physiology. The field of protein phosphorylation, especially of the Ser/Thr/Tyr type, has been profoundly transformed. We have become aware that bacterial kinases phosphorylate many protein substrates and thus constitute regulatory nodes with potential for signal integration. They also engage in cross-talk and eukaryal-like mutual activation cascades. The regulatory potential of protein acetylation and glycosylation in bacteria is also rapidly emerging, and the cross-talk between acetylation and phosphorylation has been documented. This topic deals with the complexity of the PTM landscape in bacteria, and focus in particular on the physiological roles that PTMs play and methods to study them. The topic is associated to the 1st International Conference on Post-Translational Modifications in Bacteria (September 9-10, 2014, Göttingen, Germany).


Book
Regulatory potential of post-translational modifications in bacteria
Authors: --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Post-translational modifications (PTMs) are widely employed by all living organisms to control the enzymatic activity, localization or stability of proteins on a much shorter time scale than the transcriptional control. In eukarya, global analyses consistently reveal that proteins are very extensively phosphorylated, acetylated and ubiquitylated. Glycosylation and methylation are also very common, and myriad other PTMs, most with a proven regulatory potential, are being discovered continuously. The emergent picture is that PTM sites on a single protein are not independent; modification of one residue often affects (positively or negatively) modification of other sites on the same protein. The best example of this complex behavior is the histone “bar-code” with very extensive cross-talk between phosphorylation, acetylation and methylation sites. Traditionally it was believed that large networks of PTMs exist only in complex eukaryal cells, which exploit them for coordination and fine-tuning of various cellular functions. PTMs have also been detected in bacteria, but the early examples focused on a few important regulatory events, based mainly on protein phosphorylation. The global importance (and abundance) of PTMs in bacterial physiology was systematically underestimated. In recent years, global studies have reported large datasets of phosphorylated, acetylated and glycosylated proteins in bacteria. Other modifications of bacterial proteins have been recently described: pupylation, methylation, sirtuin acetylation, lipidation, carboxylation and bacillithiolation. As the landscape of PTMs in bacterial cells is rapidly expanding, primarily due to advances of detection methods in mass spectrometry, our research field is adapting to comprehend the potential impact of these modifications on the cellular physiology. The field of protein phosphorylation, especially of the Ser/Thr/Tyr type, has been profoundly transformed. We have become aware that bacterial kinases phosphorylate many protein substrates and thus constitute regulatory nodes with potential for signal integration. They also engage in cross-talk and eukaryal-like mutual activation cascades. The regulatory potential of protein acetylation and glycosylation in bacteria is also rapidly emerging, and the cross-talk between acetylation and phosphorylation has been documented. This topic deals with the complexity of the PTM landscape in bacteria, and focus in particular on the physiological roles that PTMs play and methods to study them. The topic is associated to the 1st International Conference on Post-Translational Modifications in Bacteria (September 9-10, 2014, Göttingen, Germany).


Book
Spores and Spore Formers
Author:
ISBN: 2889452387 Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Spores and Spore Formers
Authors: --- --- --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Bacterial spore formers have been the focus of intense study for almost half a century centered primarily on Bacillus subtilis. This research has given us a detailed picture of the genetic, physiological and biochemical mechanisms that allow bacteria to survive harsh environmental conditions by forming highly robust spores. Although, many basic aspects of this process are now understood in great detail, bacterial sporulation still continues to be a highly attractive model for studying various cell processes at a molecular level. There are several reasons for such scientific interest. First, some of the complex steps in sporulation are not fully understood and/or only are only described by 'controversial' models. Second, intensive research on unicellular development of a single microorganism, B. subtilis, left us largely unaware of the multitude of diverse sporulation mechanisms in many other Gram-positive endospore and exospore formers. This diversity would likely increase if we were to include sporulation processes in the Gram-negative spore formers. In addition, spore formers have great potential in applied research. Spore forming bacteria are becoming increasingly important in the areas of probiotics, vaccine technology and biotechnology. This Research Topic in Frontiers in Microbiology details the most recent advances in basic science of spore research and cover also emerging areas of scientific importance involving the use of spores.


Book
Spores and Spore Formers
Authors: --- --- --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Bacterial spore formers have been the focus of intense study for almost half a century centered primarily on Bacillus subtilis. This research has given us a detailed picture of the genetic, physiological and biochemical mechanisms that allow bacteria to survive harsh environmental conditions by forming highly robust spores. Although, many basic aspects of this process are now understood in great detail, bacterial sporulation still continues to be a highly attractive model for studying various cell processes at a molecular level. There are several reasons for such scientific interest. First, some of the complex steps in sporulation are not fully understood and/or only are only described by 'controversial' models. Second, intensive research on unicellular development of a single microorganism, B. subtilis, left us largely unaware of the multitude of diverse sporulation mechanisms in many other Gram-positive endospore and exospore formers. This diversity would likely increase if we were to include sporulation processes in the Gram-negative spore formers. In addition, spore formers have great potential in applied research. Spore forming bacteria are becoming increasingly important in the areas of probiotics, vaccine technology and biotechnology. This Research Topic in Frontiers in Microbiology details the most recent advances in basic science of spore research and cover also emerging areas of scientific importance involving the use of spores.


Book
Spores and Spore Formers
Authors: --- --- --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Bacterial spore formers have been the focus of intense study for almost half a century centered primarily on Bacillus subtilis. This research has given us a detailed picture of the genetic, physiological and biochemical mechanisms that allow bacteria to survive harsh environmental conditions by forming highly robust spores. Although, many basic aspects of this process are now understood in great detail, bacterial sporulation still continues to be a highly attractive model for studying various cell processes at a molecular level. There are several reasons for such scientific interest. First, some of the complex steps in sporulation are not fully understood and/or only are only described by 'controversial' models. Second, intensive research on unicellular development of a single microorganism, B. subtilis, left us largely unaware of the multitude of diverse sporulation mechanisms in many other Gram-positive endospore and exospore formers. This diversity would likely increase if we were to include sporulation processes in the Gram-negative spore formers. In addition, spore formers have great potential in applied research. Spore forming bacteria are becoming increasingly important in the areas of probiotics, vaccine technology and biotechnology. This Research Topic in Frontiers in Microbiology details the most recent advances in basic science of spore research and cover also emerging areas of scientific importance involving the use of spores.

Listing 1 - 8 of 8
Sort by