Listing 1 - 4 of 4 |
Sort by
|
Choose an application
"Take advantage of the low-power consumption and enhanced functionality of SETs (single electron transistors) along with the high-speed driving and voltage gain of CMSO technology. This cutting-edge resource provides you with the conceptual framework for CMSO-SET hybrid circuit design. Supported with over 180 illustrations and packaged with a CD-ROM of practical supplementary material, the book explains spice simulation of SETs and co-simulation with CMOS, introduces specific design strategies for hybrid CMOS-SET circuits, and presents CMOS-SET co-fabrication techniques. You gain a thorough understanding of the pros and cons of digital SETs, learn how SETs can help to solve the intrinsic drawbacks of CMOS technology, and discover how the hybridization of both technologies can produce new analog functionalities which are difficult to achieve in a pure CMOS approach. From the basic physics of single electron transistors and SET modeling, to advanced concepts like CMSO-SET co-integration, the book helps you realize significant performance benefits by showing you how to incorporate SET technology into your design projects."--Publisher's website.
Metal oxide semiconductors, Complementary. --- Integrated circuits --- CMOS (Electronics) --- Complementary metal oxide semiconductors --- Semiconductors, Complementary metal oxide --- Digital electronics --- Logic circuits --- Transistor-transistor logic circuits --- Design and construction.
Choose an application
Drawing together topics from a wide range of disciplines, this text provides a comprehensive insight into the fundamentals of magnetic biosensors and the applications of magnetic nanoparticles in medicine. Internationally renowned researchers showcase topics ranging from the basic physical principles of magnetism to the detection and manipulation, synthesis protocols and natural occurrence of magnetic nanoparticles. Up-to-date examples of their clinical usage and research applications in the biomedical fields of sensing by diverse magnetic detection methods, in imaging by MRI and in therapeutic strategies such as hyperthermia, are also discussed, providing a thorough introduction to this rapidly developing field. Each chapter features questions with answers, highlighted definition boxes, and numerous illustrations which help readers grasp key concepts. Mathematical tools, together with key literature references, provide a strong underpinning for the material, making it ideal for graduate students, lecturers, medical researchers and industrial scientific strategists.
Nanostructured materials --- Biomedical materials. --- Nanomedicine. --- Magnetic properties. --- Therapeutic use.
Choose an application
Choose an application
Listing 1 - 4 of 4 |
Sort by
|