Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Topology --- 512.73 --- Infinite-dimensional manifolds --- K-theory --- Algebraic topology --- Homology theory --- Manifolds, Infinite-dimensional --- Global analysis (Mathematics) --- Topological manifolds --- Cohomology theory of algebraic varieties and schemes --- 512.73 Cohomology theory of algebraic varieties and schemes --- Infinite-dimensional manifolds. --- K-theory. --- K-théorie --- K-théorie.
Choose an application
Choose an application
The ends of a topological space are the directions in which it becomes non-compact by tending to infinity. The tame ends of manifolds are particularly interesting, both for their own sake, and for their use in the classification of high-dimensional compact manifolds. The book is devoted to the related theory and practice of ends, dealing with manifolds and CW complexes in topology and chain complexes in algebra. The first part develops a homotopy model of the behaviour at infinity of a non-compact space. The second part studies tame ends in topology. Tame ends are shown to have a uniform structure, with a periodic shift map. Approximate fibrations are used to prove that tame manifold ends are the infinite cyclic covers of compact manifolds. The third part translates these topological considerations into an appropriate algebraic context, relating tameness to homological properties and algebraic K- and L-theory.
Choose an application
Surgery theory, the basis for the classification theory of manifolds, is now about forty years old. The sixtieth birthday (on December 14, 1996) of C.T.C. Wall, a leading member of the subject's founding generation, led the editors of this volume to reflect on the extraordinary accomplishments of surgery theory as well as its current enormously varied interactions with algebra, analysis, and geometry. Workers in many of these areas have often lamented the lack of a single source surveying surgery theory and its applications. Because no one person could write such a survey, the editors asked a variety of experts to report on the areas of current interest. This is the second of two volumes resulting from that collective effort. It will be useful to topologists, to other interested researchers, and to advanced students. The topics covered include current applications of surgery, Wall's finiteness obstruction, algebraic surgery, automorphisms and embeddings of manifolds, surgery theoretic methods for the study of group actions and stratified spaces, metrics of positive scalar curvature, and surgery in dimension four. In addition to the editors, the contributors are S. Ferry, M. Weiss, B. Williams, T. Goodwillie, J. Klein, S. Weinberger, B. Hughes, S. Stolz, R. Kirby, L. Taylor, and F. Quinn.
Chirurgie (Topologie) --- Heelkunde (Topologie) --- Surgery (Topology) --- Differential topology --- Homotopy equivalences --- Manifolds (Mathematics) --- Topology --- Algebraic topology (object). --- Algebraic topology. --- Ambient isotopy. --- Assembly map. --- Atiyah–Hirzebruch spectral sequence. --- Atiyah–Singer index theorem. --- Automorphism. --- Banach algebra. --- Borsuk–Ulam theorem. --- C*-algebra. --- CW complex. --- Calculation. --- Category of manifolds. --- Characterization (mathematics). --- Chern class. --- Cobordism. --- Codimension. --- Cohomology. --- Compactification (mathematics). --- Conjecture. --- Contact geometry. --- Degeneracy (mathematics). --- Diagram (category theory). --- Diffeomorphism. --- Differentiable manifold. --- Differential geometry. --- Dirac operator. --- Disk (mathematics). --- Donaldson theory. --- Duality (mathematics). --- Embedding. --- Epimorphism. --- Excision theorem. --- Exponential map (Riemannian geometry). --- Fiber bundle. --- Fibration. --- Fundamental group. --- Group action. --- Group homomorphism. --- H-cobordism. --- Handle decomposition. --- Handlebody. --- Homeomorphism group. --- Homeomorphism. --- Homology (mathematics). --- Homomorphism. --- Homotopy extension property. --- Homotopy fiber. --- Homotopy group. --- Homotopy. --- Hypersurface. --- Intersection form (4-manifold). --- Intersection homology. --- Isomorphism class. --- K3 surface. --- L-theory. --- Limit (category theory). --- Manifold. --- Mapping cone (homological algebra). --- Mapping cylinder. --- Mostow rigidity theorem. --- Orthonormal basis. --- Parallelizable manifold. --- Poincaré conjecture. --- Product metric. --- Projection (linear algebra). --- Pushout (category theory). --- Quaternionic projective space. --- Quotient space (topology). --- Resolution of singularities. --- Ricci curvature. --- Riemann surface. --- Riemannian geometry. --- Riemannian manifold. --- Ring homomorphism. --- Scalar curvature. --- Semisimple algebra. --- Sheaf (mathematics). --- Sign (mathematics). --- Special case. --- Sub"ient. --- Subgroup. --- Submanifold. --- Support (mathematics). --- Surgery exact sequence. --- Surgery obstruction. --- Surgery theory. --- Symplectic geometry. --- Symplectic vector space. --- Theorem. --- Topological conjugacy. --- Topological manifold. --- Topology. --- Transversality (mathematics). --- Transversality theorem. --- Vector bundle. --- Waldhausen category. --- Whitehead torsion. --- Whitney embedding theorem. --- Yamabe invariant.
Listing 1 - 4 of 4 |
Sort by
|