Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Choose an application
This book provides a collection of the state-of-the-art methodologies and approaches suggested for detecting extremes, trend analysis, accounting for nonstationarities, and uncertainties associated with extreme value analysis in a changing climate. This volume is designed so that it can be used as the primary reference on the available methodologies for analysis of climate extremes. Furthermore, the book addresses current hydrometeorologic global data sets and their applications for global scale analysis of extremes. While the main objective is to deliver recent theoretical concepts, several case studies on extreme climate conditions are provided. Audience The book is suitable for teaching in graduate courses in the disciplines of Civil and Environmental Engineering, Earth System Science, Meteorology and Atmospheric Sciences.
Statistical science --- Meteorology. Climatology --- Geology. Earth sciences --- Civil engineering. Building industry --- Geography --- klimatologie --- geografie --- ingenieurswetenschappen --- meteorologie --- klimaatverandering --- statistisch onderzoek
Choose an application
This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Water
natural hazards & --- artificial neural network --- flood routing --- the Three Gorges Dam --- backtracking search optimization algorithm (BSA) --- lag analysis --- artificial intelligence --- classification and regression trees (CART) --- decision tree --- real-time --- optimization --- ensemble empirical mode decomposition (EEMD) --- improved bat algorithm --- convolutional neural networks --- ANFIS --- method of tracking energy differences (MTED) --- adaptive neuro-fuzzy inference system (ANFIS) --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- disasters --- flood prediction --- ANN-based models --- flood inundation map --- ensemble machine learning --- flood forecast --- sensitivity --- hydrologic models --- phase space reconstruction --- water level forecast --- data forward prediction --- early flood warning systems --- bees algorithm --- random forest --- uncertainty --- soft computing --- data science --- hydrometeorology --- LSTM --- rating curve method --- forecasting --- superpixel --- particle swarm optimization --- high-resolution remote-sensing images --- machine learning --- support vector machine --- Lower Yellow River --- extreme event management --- runoff series --- empirical wavelet transform --- Muskingum model --- hydrograph predictions --- bat algorithm --- data scarce basins --- Wilson flood --- self-organizing map --- big data --- extreme learning machine (ELM) --- hydroinformatics --- nonlinear Muskingum model --- invasive weed optimization --- rainfall–runoff --- flood forecasting --- artificial neural networks --- flash-flood --- streamflow predictions --- precipitation-runoff --- the upper Yangtze River --- survey --- parameters --- Haraz watershed --- ANN --- time series prediction --- postprocessing --- flood susceptibility modeling --- rainfall-runoff --- deep learning --- database --- LSTM network --- ensemble technique --- hybrid neural network --- self-organizing map (SOM) --- data assimilation --- particle filter algorithm --- monthly streamflow forecasting --- Dongting Lake --- machine learning methods --- micro-model --- stopping criteria --- Google Maps --- cultural algorithm --- wolf pack algorithm --- flood events --- urban water bodies --- Karahan flood --- St. Venant equations --- hybrid & --- hydrologic model
Choose an application
This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Water
natural hazards & --- artificial neural network --- flood routing --- the Three Gorges Dam --- backtracking search optimization algorithm (BSA) --- lag analysis --- artificial intelligence --- classification and regression trees (CART) --- decision tree --- real-time --- optimization --- ensemble empirical mode decomposition (EEMD) --- improved bat algorithm --- convolutional neural networks --- ANFIS --- method of tracking energy differences (MTED) --- adaptive neuro-fuzzy inference system (ANFIS) --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- disasters --- flood prediction --- ANN-based models --- flood inundation map --- ensemble machine learning --- flood forecast --- sensitivity --- hydrologic models --- phase space reconstruction --- water level forecast --- data forward prediction --- early flood warning systems --- bees algorithm --- random forest --- uncertainty --- soft computing --- data science --- hydrometeorology --- LSTM --- rating curve method --- forecasting --- superpixel --- particle swarm optimization --- high-resolution remote-sensing images --- machine learning --- support vector machine --- Lower Yellow River --- extreme event management --- runoff series --- empirical wavelet transform --- Muskingum model --- hydrograph predictions --- bat algorithm --- data scarce basins --- Wilson flood --- self-organizing map --- big data --- extreme learning machine (ELM) --- hydroinformatics --- nonlinear Muskingum model --- invasive weed optimization --- rainfall–runoff --- flood forecasting --- artificial neural networks --- flash-flood --- streamflow predictions --- precipitation-runoff --- the upper Yangtze River --- survey --- parameters --- Haraz watershed --- ANN --- time series prediction --- postprocessing --- flood susceptibility modeling --- rainfall-runoff --- deep learning --- database --- LSTM network --- ensemble technique --- hybrid neural network --- self-organizing map (SOM) --- data assimilation --- particle filter algorithm --- monthly streamflow forecasting --- Dongting Lake --- machine learning methods --- micro-model --- stopping criteria --- Google Maps --- cultural algorithm --- wolf pack algorithm --- flood events --- urban water bodies --- Karahan flood --- St. Venant equations --- hybrid & --- hydrologic model
Choose an application
This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Water
natural hazards & --- artificial neural network --- flood routing --- the Three Gorges Dam --- backtracking search optimization algorithm (BSA) --- lag analysis --- artificial intelligence --- classification and regression trees (CART) --- decision tree --- real-time --- optimization --- ensemble empirical mode decomposition (EEMD) --- improved bat algorithm --- convolutional neural networks --- ANFIS --- method of tracking energy differences (MTED) --- adaptive neuro-fuzzy inference system (ANFIS) --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- disasters --- flood prediction --- ANN-based models --- flood inundation map --- ensemble machine learning --- flood forecast --- sensitivity --- hydrologic models --- phase space reconstruction --- water level forecast --- data forward prediction --- early flood warning systems --- bees algorithm --- random forest --- uncertainty --- soft computing --- data science --- hydrometeorology --- LSTM --- rating curve method --- forecasting --- superpixel --- particle swarm optimization --- high-resolution remote-sensing images --- machine learning --- support vector machine --- Lower Yellow River --- extreme event management --- runoff series --- empirical wavelet transform --- Muskingum model --- hydrograph predictions --- bat algorithm --- data scarce basins --- Wilson flood --- self-organizing map --- big data --- extreme learning machine (ELM) --- hydroinformatics --- nonlinear Muskingum model --- invasive weed optimization --- rainfall–runoff --- flood forecasting --- artificial neural networks --- flash-flood --- streamflow predictions --- precipitation-runoff --- the upper Yangtze River --- survey --- parameters --- Haraz watershed --- ANN --- time series prediction --- postprocessing --- flood susceptibility modeling --- rainfall-runoff --- deep learning --- database --- LSTM network --- ensemble technique --- hybrid neural network --- self-organizing map (SOM) --- data assimilation --- particle filter algorithm --- monthly streamflow forecasting --- Dongting Lake --- machine learning methods --- micro-model --- stopping criteria --- Google Maps --- cultural algorithm --- wolf pack algorithm --- flood events --- urban water bodies --- Karahan flood --- St. Venant equations --- hybrid & --- hydrologic model
Listing 1 - 5 of 5 |
Sort by
|