Listing 1 - 5 of 5 |
Sort by
|
Choose an application
The book contains 8 detailed expositions of the lectures given at the Kaikoura 2000 Workshop on Computability, Complexity, and Computational Algebra. Topics covered include basic models and questions of complexity theory, the Blum-Shub-Smale model of computation, probability theory applied to algorithmics (randomized alogrithms), parametric complexity, Kolmogorov complexity of finite strings, computational group theory, counting problems, and canonical models of ZFC providing a solution to continuum hypothesis. The text addresses students in computer science or mathematics, and professionals i
Choose an application
Intuitively, a sequence such as 101010101010101010… does not seem random, whereas 101101011101010100…, obtained using coin tosses, does. How can we reconcile this intuition with the fact that both are statistically equally likely? What does it mean to say that an individual mathematical object such as a real number is random, or to say that one real is more random than another? And what is the relationship between randomness and computational power. The theory of algorithmic randomness uses tools from computability theory and algorithmic information theory to address questions such as these. Much of this theory can be seen as exploring the relationships between three fundamental concepts: relative computability, as measured by notions such as Turing reducibility; information content, as measured by notions such as Kolmogorov complexity; and randomness of individual objects, as first successfully defined by Martin-Löf. Although algorithmic randomness has been studied for several decades, a dramatic upsurge of interest in the area, starting in the late 1990s, has led to significant advances. This is the first comprehensive treatment of this important field, designed to be both a reference tool for experts and a guide for newcomers. It surveys a broad section of work in the area, and presents most of its major results and techniques in depth. Its organization is designed to guide the reader through this large body of work, providing context for its many concepts and theorems, discussing their significance, and highlighting their interactions. It includes a discussion of effective dimension, which allows us to assign concepts like Hausdorff dimension to individual reals, and a focused but detailed introduction to computability theory. It will be of interest to researchers and students in computability theory, algorithmic information theory, and theoretical computer science.
Complex analysis --- Computer science --- Computer. Automation --- toegepaste informatica --- complexe analyse (wiskunde) --- computers --- algoritmen --- Computable functions. --- Computational complexity. --- Algorithms. --- Computers. --- Algorithm Analysis and Problem Complexity. --- Theory of Computation. --- Computation by Abstract Devices. --- Automatic computers --- Automatic data processors --- Computer hardware --- Computing machines (Computers) --- Electronic brains --- Electronic calculating-machines --- Electronic computers --- Hardware, Computer --- Computer systems --- Cybernetics --- Machine theory --- Calculators --- Cyberspace --- Algorism --- Algebra --- Arithmetic --- Foundations
Choose an application
Choose an application
Reverse mathematics --- Computable functions --- Decidability (Mathematical logic)
Choose an application
Goncharov and Peretyat'kin independently gave necessary and sufficient conditions for when a set of types of a complete theory T is the type spectrum of some homogeneous model of T. Their result can be stated as a principle of second order arithmetic, which is called the Homogeneous Model Theorem (HMT), and analyzed from the points of view of computability theory and reverse mathematics. Previous computability theoretic results by Lange suggested a close connection between HMT and the Atomic Model Theorem (AMT), which states that every complete atomic theory has an atomic model. The authors show that HMT and AMT are indeed equivalent in the sense of reverse mathematics, as well as in a strong computability theoretic sense and do the same for an analogous result of Peretyat'kin giving necessary and sufficient conditions for when a set of types is the type spectrum of some model.
Reverse mathematics. --- Computable functions. --- Decidability (Mathematical logic)
Listing 1 - 5 of 5 |
Sort by
|