Listing 1 - 10 of 20 | << page >> |
Sort by
|
Choose an application
Choose an application
Een stap in de goede richting voor Alzheimer onderzoek Alzheimer, de meeste mensen kennen wel iemand die met deze toetakelende ziekte te kampen heeft. Daarenboven zal het aantal getroffen mensen alleen maar toenemen, aangezien we steeds ouder worden. Aan de andere kant zullen we dan kunnen rekenen op minder (financiële) steun, vanwege de vergrijzing. Zo ziet de situatie er nu alleszins uit, maar wat als er medicatie zou kunnen worden ontwikkeld die Alzheimer kan voorkomen, genezen, of een halt toeroepen? Alzheimer wordt veroorzaakt door het afsterven van neuronen (zenuwcellen) in de hersenen. Daarenboven wordt het gekenmerkt door de aanwezigheid van zogenaamde neurofibrillaire ‘klitten’ die een proteïne genaamd Tau bevatten. Er worden dus als het ware kluwens van samengeklit Tau gevormd, waardoor deze proteïne zijn functie niet meer kan uitoefenen of misschien zelfs toxisch wordt. Dit is een probleem, aangezien Tau een noodzakelijke rol speelt in het functioneren van neuronen. Tau kan gemakkelijk van structuur veranderen en kan daardoor fase scheiding ondergaan, waarbij verschillende Tau proteïnen groeperen in vloeistof-achtige druppeltjes. Hoewel deze druppeltjes een normale functie zouden kunnen hebben, zouden ze ook een overgang kunnen representeren van ‘gezond’ Tau naar pathologisch Tau. Daarnaast blijkt ook de fosforylatie van Tau, met andere woorden, het toevoegen van fosfaatgroepen, geassocieerd te zijn met pathologische functies. Wij trachtten te onderzoeken of de fosforylatie van Tau op bepaalde locaties een effect heeft op de structuur en het fase scheiding gedrag van deze proteïne. Dit werd gedaan door middel van het nabootsen van fosforylatie. Aangezien Tau vaak van structuur verandert, is het moeilijk om deze te bestuderen met klassieke technieken. Daarom gebruikten wij een techniek waarbij we de afstand tussen bepaalde locaties van de moleculen kunnen meten. Aangezien de afstand tussen slechts twee verschillende locatie-paren werd getest, konden er weinig conclusies getrokken worden betreffende de structuur van de proteïne. Er waren echter wel aanwijzingen dat fosforylatie zorgt voor meer dynamische proteïnen. Deze zouden meer switchen tussen verschillende structuren. Daarnaast zagen we dat er grotere druppeltjes gevormd werden bij Tau waar fosforylatie bij werd nagebootst. Dit zou het gevolg kunnen zijn van de extra negatieve ladingen die aanwezig zijn in deze proteïne, waardoor de interacties binnen en tussen moleculen zouden kunnen veranderen. Deze bevindingen dragen bij aan het beter begrijpen van hoe Alzheimer tot stand komt, wat op zijn beurt kan bijdragen aan de ontwikkeling van medicatie.
Choose an application
Choose an application
Targeting of proteins to specific organelles, to membranes or to the extracellular environment is a ubiquitous and essential biological process in all life forms, from bacteria to higher Eukaryotes and engages more than 30% of the proteome. In bacterial cells such as E.coli, the Sec translocase system is responsible for translocation of a large quantity of secreted (~500) and integrated membrane proteins (~1100). The Sec system is viewed as a model system, because of his structural and functional similarity with eukaryotic sorting systems. Besides, it is a challenging target for antibacterial therapy since it is essential for the liveability of bacteria. In general, Sec comprises a conserved protein-conducting channel, the SecYEG heterotrimer, which associates with cytoplasmic partners that thread polypeptides through it and provide the required energy. In the post-translational translocation route taken by secretory proteins, the partner is the dimeric peripheral ATPase motor SecA, which shuttles between the cytoplasm and membrane. SecA recognizes secretory peptides and attracts them to the channel. Because of their evolutionary connection with the endoplasmatic reticulum (ER) translocon, Sec proteins have been the subject of many studies. What is generally lacking in the protein targeting/secretion field is knowledge on the mechanistic of the recognition of targeting signals. Another major remaining challenge is to determine the exact mechanism by which chains cross the membrane. Better insights in the Sec mechanisms is essential (i) to verify the fundamental aspects of protein sorting and (ii) to support the target-based research for possible inhibitors of protein sorting. Since protein conformation and conformational dynamics seems to be the key to the function of translocases, there is an essential need of methods to study conformations at a quantitative manner. Those methods prefer working at the single-molecule level to study heterogeneity in populations of biomolecules. Besides those methods needs to be performed at biological relevant conditions to minimally disturb the molecular function. Specific for this project, the main objectives are the development of innovative quantitative fluorescence microscopy techniques to study dynamic conformation wobbling in vitro and dynamic structures in vivo at a quantitative manner. Those methodology will in this work be applied on detailed study of the E. coli Sec reaction pathway. More specific we will study the SecA ATPase motor protein in detail. It is important to complement structural and consisting biophysical methods with advanced imaging methods to achieve both qualitative and quantitative information. The project will be divided in four work packages : (i) Single-pair Förster resonance energy transfer (spFRET) on a multiparameter fluorescence detection microscope (MFD) combined with pulsed interleaved excitation (PIE), (ii) Mechanistic of substrate recognition of SecA, (iii) mechanism of substrate translocation at SecYEG and (iv) biophysical analysis of the Sec pathway in vivo using super resolution methods and fluctuation imaging methods. This project bridges the field of molecular microbiology research and single-molecule microscopy. This is the first time a collaboration has been established between the Laboratory for Photochemistry and Spectroscopy (LPS) and the Laboratory of Molecular Bacteriology (LMB). At the LPS (Hofkens, Hendrix) the expertise exists to set up a platform for carrying out exactly such technical developments. Likewise, research at the LMB (Economou) is at a point where state-of-the-art biochemical/-physical methods are available to support the required biological developments. The fundamental knowledge gained about the cellular protein sorting and secretion in bacteria can result in new targets for the antibiotic industry. At the same time, new state-of-the-art methods will be developed (MFD-PIE platform) which can be used for internal and external research with different purposes, such as research on conformation, dynamics and interactions of molecules.
Choose an application
Cells are able to communicate with their environment owing to signal transduction processes, which on a higher level are controlling and maintaining the physiological conditions in the organism. Depending on the signaling pathway activated, the responses can be diverse, such as cell differentiation, death, or proliferation. In healthy organisms, all these processes are tightly regulated and even coupled together, forming elaborate networks. However, in pathological conditions damaging signals may keep being transmitted, or malfunctioning cells may keep growing and dividing. The latter often correlates with the appearance of disorders such as cancer, chronic inflammation, and neurodegenerative diseases, to name a few. It comes as no surprise that signal transduction therapy has a pivotal role in modern drug research. Accordingly, the focus of this work lies on developing new fluorescence microscopy tools and applying existing ones to investigate signal transduction pathways in living cells. More specifically, we aimed to develop a new mode to detect FRET, which relies on a dim fluorescent protein and its special characteristics. Dim fluorescent proteins and chromoproteins are generally unknown or overlooked by 'end users' of fluorescent proteins, who usually turn to the brightest possible variants for their applications. However, dim fluorescent proteins and chromoproteins possess certain photophysical characteristics thanks to which they perform better than their bright relatives in specific applications (e.g. in photoacoustic imaging). We review reported uses of dim fluorescent proteins and chromoproteins, and find a surprisingly big and expanding field, mostly in spectroscopic applications, but also in non-spectroscopic uses. We also propose a new application for dim fluorescent proteins, where we developed a new mode to quantify FRET, called 'FADED'. FADED by definition relies on dim fluorescent protein GeudaSapphire as a donor in a FRET pair, to accurately evaluate the FRETinduced angular displacement between donor and acceptor. Thus, FADED provides a new level of information for FRET quantification, i.e. the relative angle between donor and acceptor fluorescent proteins. The second aim of this work was to utilize fluorescent proteins and advanced fluorescence microscopy techniques to gain biological insight on ErbB3 receptors. The ErbB family of receptors plays an essential role in several normal cellular processes, but also in aberrant situations such as neurodegenerative diseases and cancer. Especially the interacting pair of ErbB2-ErbB3 has received a lot of attention from the scientific community, due to its oncogenic signaling potential. Moreover, several mutations on the ErbB3 gene have been identified in cancer patients, whose role in signaling potential has not been fully elucidated. We used established fluorescent proteins and a FP-based sensor to: a) establish a system to probe receptor interactions at the plasma membrane by employing raster image cross-correlation spectroscopy combined with pulsed interleaved excitation (PIE-ccRICS), and b) to follow the downstream signaling of ErbB3 and mutants via the ERK pathway, by using time-lapse FRET imaging.
Choose an application
De ontwikkeling van fluorescente eiwitten (FP's) laat ons toe om met behulp van fluorescentie microscopie bepaalde eiwitten te bestuderen in cellen. Fluorescentie microscopie maakt gebruik van specifieke lichtbronnen om deze eiwitten te doen fluoresceren. Eerder had men al fluorescerende eiwitten met verschillende kleuren ontdekt en/of ontwikkeld zoals blauw, cyaan, geel, groen en rood. Deze zijn reeds getest voor het bestuderen van eiwitten in cellen. Recent werden bijna-infrarode fluorescente eiwitten ontwikkeld (NIRFP's), welke mogelijk eveneens kunnen dienen als fluorescente merkers en die vervolgens de mogelijkheid bieden om ook twee of meer verschillende eiwitten tegelijkertijd te visualiseren. Dit in combinatie met veelgebruikte fluorescente eiwitten zoals een groen fluorescerend eiwit, eGFP en/of een rood fluorescerend eiwit, mCherry. Het algemene doel van dit project is om de toepasbaarheid van fluorescentie fluctuatie beeldvorming met deze NIRFP's te onderzoeken. Hierbij werd gebruik gemaakt van een fluctuatie beeldvorming techniek, genaamd RICS, omdat het een voorkeursmethode is om informatie te verkrijgen over de beweging en eveneens om interacties tussen eiwitten te bestuderen. Deze methode maakt gebruik van statistische berekeningen om herhalende fluorescentie fluctuatie patronen van deze fluorescerende eiwitten te vinden en de samenhang hier tussen te bepalen. Vier NIRFP's (E2-Crimson, eqFP670, mNeptune en iRFP) werden geselecteerd op basis van hun fluorescerende eigenschappen. Vervolgens werden deze NIRFP's in vitro getest, om na te gaan of ze geschikt zijn voor fluorescentie beeldvorming, zonder combinatie met een ander fluorescerend eiwit. Ook werden er visualisatie-experimenten in levende cellen uitgevoerd met deze NIRFP's, waarbij eerst geverifieerd werd of deze geschikt zijn in éénkleur visualisatie en in een latere fase getest voor hun bruikbaarheid in tweekleuren visualisatie. Indien deze geschikt zijn voor tweekleuren visualisatie, zouden deze in combinatie met een ander fluorescerend eiwit, indien ze met elkaar verbonden zijn, op hetzelfde moment een fluctuatie signaal moeten geven. Uit deze verschillende experimenten kan besloten worden dat E2-Crimson, eqFP670 en iRFP wel degelijk tot de groep van bijna-infrarode fluorescente eiwitten behoren, terwijl mNeptune eerder tot de groep van rode fluorescente eiwitten behoort. Tevens werd er duidelijk aangetoond dat het mogelijk is om deze NIRFPs te gebruiken voor in vitro analyse met fluorescentie beeldvorming technieken. In cellen werd eveneens aangetoond dat deze NIRFP's gebruikt kunnen worden om de beweging van moleculen te bestuderen, maar dat ze op dit moment nog niet geschikt zijn om in combinatie met een ander fluorescerend eiwit gebruikt te worden om interacties in cellen aan te tonen. Globaal kan er dus besloten worden dat, hoewel de in deze thesis bestudeerde NIRFP's een aantal interessante spectrale eigenschappen bezitten en gebruikt kunnen worden voor éénkleuren fluctuatie analyse, er toch betere NIRFP's (maturatie, helderheid, etc) nodig zijn.
Choose an application
Lifetime imaging has gained tremendous popularity in microscopy over the past years. It is an efficient tool for investigating biological samples as fluorophore lifetime is affected by many parameters. Lifetime imaging is widely used for studying molecule conformation and detecting changes in pH or presence of fluorophore quenchers. It is also used to study FRET because the donor lifetime is affected by acceptor presence (fluorescence quencher). Measuring the change in lifetime therefore allows for determining the FRET efficiency. Lifetime is often determined by decay fitting procedures. However, fitting analysis is not optimal. Phasor analysis allows for easy lifetime determination and interpretation of FRET using the phasor plot. Moreover, phasor analysis allows for a pixel wise lifetime analysis instead of whole image fluorescence decay analysis. Given the advantages phasor analysis presents we have implemented it in this thesis. Using PAM software on a home-built confocal PIE microscope we introduced a FLIM-based FRET analysis with phasor for the study of HIV integrase oligomerization. In this thesis we want to probe FRET in interacting integrase protein thereby confirming applicability of our method to the question of HIV integrase oligomerization during infection. To reach this goal we firstly set out to investigate the previously used fluorescent protein used for FRET studies with HIV integrase. We tried to improve using recently developed fluorescent proteins which would be more suitable for live cell and multi frame imaging. Plasmids obtained during the cloning of Vpr-IN-FP constructs were tested for functionality of the fluorescent protein by transfecting HeLa cells. All cells showed proper transfection and expected fluorescent lifetimes which lead to testing in viral particles. First particles either donor or acceptor protein labels on integrase were tested. All particles except for the mRubuy3 particles showed expected lifetimes and proper intensity. Produced HIV particles for FRET experiments contained two sets of labeled integrase. The first set of viral particles yields a combination of mNeongreen (donor) and mScarlet (acceptor), the second set mClover3 (donor) and mRuby3 (acceptor). In the produced FRET particles, issues were found regarding the ones containing the mRuby3. Therefore, we decided to continue using only particles with the combination of mNeongreen and mScarlet labeled integrase. Finally, to obtain information of integrase oligomerization, HeLa cells were infected with viral particles containing the fluorescently labeled integrase. We showed our capability to perform FLIM to investigate FRET in viral particles during HIV-1 infection. We prove presence of both FRET donor and acceptor and the dependency of the donor lifetime on presence of FRET acceptor.
Choose an application
Translocations of the KMT2A gene are frequently observed in acute leukemias with particularly poor prognoses. Fusion of KMT2A with one of over 90 different partner genes establishes an oncogenic gene expression program via the expression of a chimeric protein. Despite the diversity of fusion partners, all retain the N-terminal region of KMT2A. Consequently, a common feature of all known KMT2A oncoproteins is the formation of a ternary complex, comprising MENIN and lens epithelium-derived growth factor p75 (LEDGF/p75), on the N-terminus. Various studies have demonstrated the importance of the KMT2A-MENIN-LEDGF/p75 ternary complex in KMT2A-r leukemogenesis. Herein, LEDGF/p75 serves as a molecular tether targeting the oncogenic fusion protein to the chromatin in a manner reminiscent to its role as a cellular cofactor in Human Immunodeficiency Virus type-1 (HIV-1) infection. Functionally, the N-terminal integrase binding domain (IBD) and C-terminal Pro-Trp-Trp-Pro (PWWP) domain of LEDGF/p75 are essential to facilitate these pathogenic processes. Aside from LEDGF/p75, hepatoma derived growth factor (HDGF)-related protein 2 (HRP2) is the only other protein to contain both an IBD and a PWWP domain. Unpublished results from our group have demonstrated the binding of HRP2 to the N-terminal fragment of KMT2A, suggesting a potential role in KMT2A-r leukemia. In line with a prior study showing impaired proliferation of KMT2A-transformed cells upon depletion of LEDGF/p75, a knockdown of HRP2 was examined. This revealed an impaired growth of cells upon depletion of HRP2. Interestingly, the role of HRP2 in cellular growth was seemingly independent of KMT2A-fusions, suggesting a more general pro-survival role. In this thesis, the effect of HRP2 knockdown on growth was evaluated in various leukemic and non-leukemic cell lines. The results confirmed a KMT2A-fusion independent effect on growth upon depletion of HRP2. Furthermore, in light of the COVID-19 pandemic, a role of LEDGF/p75 in facilitating nucleosome accessibility was examined using previously acquired AFM images. Whilst the analysis did not demonstrate an obvious role of LEDGF/p75, more data would have to be acquired to draw solid conclusion.
Choose an application
Fluorescence lifetime imaging is a very powerful tool for the determination of changes in the environment of the fluorophores under study. Among these changes, the decrease in lifetime that the presence of a quencher (like a FRET acceptor) induces is of paramount interest. Changes in fluorescence lifetime can be used to measure conformational changes, differences in pH, calcium concentration… In our case we have decided to use the FRET pair formed by mTFP1 and mVenus to monitor the oligomerization state of HIV-1 integrase by alternatively labelling the integrase with mTFP1 or mVenus. The first step of our study was to assemble the confocal microscope in which we were going to image the different viral fusion constructs. Although we only needed two excitation lines and two detection channels we decided to build a setup with 6 excitation lines and 4-color detection as this would provide with more flexibility for future research. Once the physical assembly of the microscope was done we used fluorescence correlation spectroscopy to test the alignment of all the components of the setup. FCS analysis of free dyes confirmed that the microscope had been well assembled. Additionally, we used spatial autocorrelation to determine accurately the pixel size of the images recorded. Fluorescence lifetime imaging is usually analysed by fitting the measured decays of the fluorophores. The main drawback fitting methods have is that multiexponential decays are difficult to analyse properly and expertise is required to avoid artefacts. Therefore, we decided to use the phasor approach for fluorescence lifetime imaging analysis. This approach eliminates the need for fitting steps simplifying data analysis. Our results show that phasor approach is a valid analysis tool for the determination of fluorescence lifetime. The second step was to develop the required Matlab routines that allowed for single particle selection in an image and to calculate the phasors of those particles. Initial tests were performed using viral particles labelled with eGFP and confirmed that the developed code and phasor approach also work well for single particle analysis. The lifetime analysis of integrase labelled with mTFP1 and mVenus revealed an unexpected increase in the lifetimes of the two fluorescent proteins in the fusion construct compared with the free protein. To test if this effect was a result of an increase in the rigidity of the fluorescent protein when they were fused to the integrase we studied the fluorescence anisotropy of the free protein and labelled viruses in solution. No apparent changes in fluorescence anisotropy were observed although further experiments are still required to determine the origin of this increase in fluorescence lifetime. Our final aim, was to determine if HIV particles localized in different points inside the cells would show differences in FRET efficiency. To do so we infected HeLa cells with integrase-labelled HIV and imaged them. No conclusion can be drawn yet from this experiments and further research is needed to accomplish the final goal of this project.
Choose an application
Single molecule Forster resonance energy transfer (smFRET) is a research methodology that has been on the rise for the past 10 years. At some point in a biochemical study it is useful to study the conformational dynamics of a particular protein system. By means of the energy transfer between 2 fluorophores, FRET can calculate the intramolecular immunity and thus quantify different states of a molecule. In Leuven, the smFRET confocal microscope is used for this purpose. The observation time of the molecule is limited to a maximum of 10 ms. However, many conformational dynamics in nature are slower than that and cannot be observed using this current technique. This limit can be exceeded by immobilizing the molecule for interest on a surface. This keeps the molecule in focus for longer and in the best case the molecule can be observed for up to 1 second, from which it is possible to quantify slower conformational dynamics. Dynamics can be studied in different ways, the most simple and therefore obvious way is to use a simple model system, DNA Hairpins. In the first part of the thesis, smFRET measurements were made on dynamic hairpins that differ in stem sequence and therefore exhibit a different thermodynamic stability. A rising salt concentration was implemented which modified the open/close kinetics of the hairpin molecule by a reduced repulsion of the intramolecular charge of the phosphodiester binding of DNA. The opening and closing rate of the different hairpins was calculated using DynamicPDA analysis and compared with each other. In the second part of the thesis a protocol was created to immobilize biotinylated molecules on a surface. Two different types of strategies were used: BSA and PLL-PEG. These two were compared on the basis of unspecific binding and density in preparation for the immobilization experiments using a TIRF microscope. In a second project we took part in a continuation of the Hellenkamp study. This is a multi-laboratory benchmark study in which 20 different research institutions participate.
Listing 1 - 10 of 20 | << page >> |
Sort by
|