Narrow your search

Library

AP (2)

KDG (2)

VUB (2)

KU Leuven (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

ULiège (1)

More...

Resource type

book (3)

digital (2)


Language

English (3)


Year
From To Submit

2023 (2)

2021 (1)

Listing 1 - 3 of 3
Sort by

Book
Kurt Gödel: Results on Foundations
Authors: ---
ISBN: 303137875X 3031378741 Year: 2023 Publisher: Cham : Springer Nature Switzerland : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Kurt Gödel (1906-1978) gained world-wide fame by his incompleteness theorem of 1931. Later, he set as his aim to solve what are known as Hilbert's first and second problems, namely Cantor's continuum hypothesis about the cardinality of real numbers, and secondly the consistency of the theory of real numbers and functions. By 1940, he was halfway through the first problem, in what was his last published result in logic and foundations. His intense attempts thereafter at solving these two problems have remained behind the veil of a forgotten German shorthand he used in all of his writing. Results on Foundations is a set of four shorthand notebooks written in 1940-42 that collect results Gödel considered finished. Its main topic is set theory in which Gödel anticipated several decades of development. Secondly, Gödel completed his 1933 program of establishing the connections between intuitionistic and modal logic, by methods and results that today are at the same time new and 80 years old. The present edition of Gödel's four notebooks encompasses the 368 numbered pages and 126 numbered theorems of the Results on Foundations, together with a list of 74 problems on set theory Gödel prepared in 1946, and a list of an unknown date titled "The grand program of my research in ca. hundred questions.''.


Multi
Kurt Gödel
Authors: --- ---
ISBN: 9783030872960 9783030872977 9783030872984 9783030872953 Year: 2021 Publisher: Cham Springer International Publishing :Imprint: Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

Paris of the year 1900 left two landmarks: the Tour Eiffel, and David Hilbert's celebrated list of twenty-four mathematical problems presented at a conference opening the new century. Kurt Gödel, a logical icon of that time, showed Hilbert's ideal of complete axiomatization of mathematics to be unattainable. The result, of 1931, is called Gödel's incompleteness theorem. Gödel then went on to attack Hilbert's first and second Paris problems, namely Cantor's continuum problem about the type of infinity of the real numbers, and the freedom from contradiction of the theory of real numbers. By 1963, it became clear that Hilbert's first question could not be answered by any known means, half of the credit of this seeming faux pas going to Gödel. The second is a problem still wide open. Gödel worked on it for years, with no definitive results; The best he could offer was a start with the arithmetic of the entire numbers. This book, Gödel's lectures at the famous Princeton Institute for Advanced Study in 1941, shows how far he had come with Hilbert's second problem, namely to a theory of computable functionals of finite type and a proof of the consistency of ordinary arithmetic. It offers indispensable reading for logicians, mathematicians, and computer scientists interested in foundational questions. It will form a basis for further investigations into Gödel's vast Nachlass of unpublished notes on how to extend the results of his lectures to the theory of real numbers. The book also gives insights into the conceptual and formal work that is needed for the solution of profound scientific questions, by one of the central figures of 20th century science and philosophy.


Multi
Kurt Gödel: Results on Foundations
Authors: --- ---
ISBN: 9783031378751 9783031378744 9783031378768 9783031378775 Year: 2023 Publisher: Cham Springer Nature Switzerland :Imprint: Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

Kurt Gödel (1906-1978) gained world-wide fame by his incompleteness theorem of 1931. Later, he set as his aim to solve what are known as Hilbert's first and second problems, namely Cantor's continuum hypothesis about the cardinality of real numbers, and secondly the consistency of the theory of real numbers and functions. By 1940, he was halfway through the first problem, in what was his last published result in logic and foundations. His intense attempts thereafter at solving these two problems have remained behind the veil of a forgotten German shorthand he used in all of his writing. Results on Foundations is a set of four shorthand notebooks written in 1940-42 that collect results Gödel considered finished. Its main topic is set theory in which Gödel anticipated several decades of development. Secondly, Gödel completed his 1933 program of establishing the connections between intuitionistic and modal logic, by methods and results that today are at the same time new and 80 years old. The present edition of Gödel's four notebooks encompasses the 368 numbered pages and 126 numbered theorems of the Results on Foundations, together with a list of 74 problems on set theory Gödel prepared in 1946, and a list of an unknown date titled "The grand program of my research in ca. hundred questions.''.

Listing 1 - 3 of 3
Sort by