Narrow your search

Library

ULiège (3)

AP (2)

KDG (2)

KU Leuven (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

VIVES (2)

More...

Resource type

book (5)

digital (2)


Language

English (5)

French (1)


Year
From To Submit

2022 (1)

2013 (2)

2012 (3)

Listing 1 - 6 of 6
Sort by

Book
Complex Monge-Ampere equations and geodesics in the space of Kahler metrics
Author:
ISBN: 3642236685 3642236693 Year: 2012 Publisher: Berlin ; Heidelberg : Springer Verlag,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The purpose of these lecture notes is to provide an introduction to the theory of complex Monge–Ampère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact Kähler manifolds (with or without boundary). These operators are of central use in several fundamental problems of complex differential geometry (Kähler–Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and dynamics. The topics covered include, the Dirichlet problem (after Bedford–Taylor), Monge–Ampère foliations and laminated currents, polynomial hulls and Perron envelopes with no analytic structure, a self-contained presentation of Krylov regularity results, a modernized proof of the Calabi–Yau theorem (after Yau and Kolodziej), an introduction to infinite dimensional riemannian geometry, geometric structures on spaces of Kähler metrics (after Mabuchi, Semmes and Donaldson), generalizations of the regularity theory of Caffarelli–Kohn–Nirenberg–Spruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after Phong–Sturm and Berndtsson). Each chapter can be read independently and is based on a series of lectures by R. Berman, Z. Blocki, S. Boucksom, F. Delarue, R. Dujardin, B. Kolev and A. Zeriahi, delivered to non-experts. The book is thus addressed to any mathematician with some interest in one of the following fields, complex differential geometry, complex analysis, complex dynamics, fully non-linear PDE's and stochastic analysis.


Book
Introduction à la géométrie différentielle
Author:
ISBN: 9782100829842 210082984X Year: 2022 Publisher: Malakoff : Dunod,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"Cet ouvrage est une introduction à la géométrie différentielle. Il explore certains invariants intrinsèques fondamentaux (longueur des courbes, distance, courbure de Gauss) qui permettent de comparer les objets géométriques selon plusieurs échelles (infinitésimale, locale, globale). Pour éviter aux étudiants de se noyer dans un flot de concepts nouveaux difficiles à digérer, le livre commence par traiter en détail le cas des courbes et des surfaces. Il explore ensuite la notion de sous-variété différentielle de Rn et généralise le calcul différentiel dans ce cadre. La notion de variétés abstraites constitue le point d'orgue du livre, ainsi qu'une invitation à poursuivre leur étude géométrique. Cet ouvrage présuppose une bonne familiarité avec le calcul différentiel classique et l'algèbre multilinéaire (niveau L2-L3). Il contient plus d'une centaine d'exemples et d'exercices corrigés."


Multi
Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics
Author:
ISBN: 9783642236693 Year: 2012 Publisher: Berlin, Heidelberg Springer Berlin Heidelberg


Book
Complex Monge-Ampère Equations and Geodesics in the Space of Kähler Metrics
Authors: ---
ISBN: 9783642236693 Year: 2012 Publisher: Berlin Heidelberg Springer Berlin Heidelberg

Loading...
Export citation

Choose an application

Bookmark

Abstract

The purpose of these lecture notes is to provide an introduction to the theory of complex Monge-Ampère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact Kähler manifolds (with or without boundary). These operators are of central use in several fundamental problems of complex differential geometry (Kähler-Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and dynamics. The topics covered include, the Dirichlet problem (after Bedford-Taylor), Monge-Ampère foliations and laminated currents, polynomial hulls and Perron envelopes with no analytic structure, a self-contained presentation of Krylov regularity results, a modernized proof of the Calabi-Yau theorem (after Yau and Kolodziej), an introduction to infinite dimensional riemannian geometry, geometric structures on spaces of Kähler metrics (after Mabuchi, Semmes and Donaldson), generalizations of the regularity theory of Caffarelli-Kohn-Nirenberg-Spruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after Phong-Sturm and Berndtsson). Each chapter can be read independently and is based on a series of lectures by R. Berman, Z. Blocki, S. Boucksom, F. Delarue, R. Dujardin, B. Kolev and A. Zeriahi, delivered to non-experts. The book is thus addressed to any mathematician with some interest in one of the following fields, complex differential geometry, complex analysis, complex dynamics, fully non-linear PDE's and stochastic analysis.


Book
An Introduction to the Kähler-Ricci Flow
Authors: --- ---
ISBN: 3319008188 3319008196 Year: 2013 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research.   The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman’s celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman’s surgeries.


Digital
An Introduction to the Kähler-Ricci Flow
Authors: --- ---
ISBN: 9783319008196 Year: 2013 Publisher: Cham Springer International Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research.   The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman’s celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman’s surgeries.

Listing 1 - 6 of 6
Sort by