Listing 1 - 10 of 28 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
This book is about inductive databases and constraint-based data mining, emerging research topics lying at the intersection of data mining and database research. The aim of the book as to provide an overview of the state-of- the art in this novel and - citing research area. Of special interest are the recent methods for constraint-based mining of global models for prediction and clustering, the uni?cation of pattern mining approaches through constraint programming, the clari?cation of the re- tionship between mining local patterns and global models, and the proposed in- grative frameworks and approaches for inducive databases. On the application side, applications to practically relevant problems from bioinformatics are presented. Inductive databases (IDBs) represent a database view on data mining and kno- edge discovery. IDBs contain not only data, but also generalizations (patterns and models) valid in the data. In an IDB, ordinary queries can be used to access and - nipulate data, while inductive queries can be used to generate (mine), manipulate, and apply patterns and models. In the IDB framework, patterns and models become ”?rst-class citizens” and KDD becomes an extended querying process in which both the data and the patterns/models that hold in the data are queried.
Bioinformatics. --- Data mining -- Congresses. --- Data mining. --- Database management -- Congresses. --- Database searching -- Congresses. --- Knowledge acquisition (Expert systems). --- Data mining --- Engineering & Applied Sciences --- Computer Science --- Database management. --- Data searching. --- Algorithmic knowledge discovery --- Factual data analysis --- KDD (Information retrieval) --- Knowledge discovery in data --- Knowledge discovery in databases --- Mining, Data --- Data base management --- Data services (Database management) --- Database management services --- DBMS (Computer science) --- Generalized data management systems --- Services, Database management --- Systems, Database management --- Systems, Generalized database management --- Computer science. --- Artificial intelligence. --- Computer Science. --- Database Management. --- Data Mining and Knowledge Discovery. --- Artificial Intelligence (incl. Robotics). --- Computational Biology/Bioinformatics. --- Database searching --- Electronic data processing --- Artificial Intelligence. --- Bio-informatics --- Biological informatics --- Biology --- Information science --- Computational biology --- Systems biology --- AI (Artificial intelligence) --- Artificial thinking --- Electronic brains --- Intellectronics --- Intelligence, Artificial --- Intelligent machines --- Machine intelligence --- Thinking, Artificial --- Bionics --- Cognitive science --- Digital computer simulation --- Logic machines --- Machine theory --- Self-organizing systems --- Simulation methods --- Fifth generation computers --- Neural computers --- Data processing
Choose an application
The3rdInternationalWorkshoponKnowledgeDiscoveryinInductiveDatabases (KDID 2004) was held in Pisa, Italy, on September 20, 2004 as part of the 15th European Conference on Machine Learning and the 8th European Conference onPrinciplesandPracticeofKnowledgeDiscoveryinDatabases(ECML/PKDD 2004). Ever since the start of the ?eld of data mining, it has been realized that the knowledge discovery and data mining process should be integrated into database technology. This idea has been formalized in the concept of inductive databases, introduced by Imielinski and Mannila (CACM 1996, 39(11)). In general, an inductive database is a database that supports data mining and the knowledge discovery process in a natural and elegant way. In addition to the usual data, it also contains inductive generalizations (e.g., patterns, models) extracted from the data. Within this framework, knowledge discovery is an - teractive process in which users can query the inductive database to gain insight to the data and the patterns and models within that data. Despite many recent developments, there still exists a pressing need to - derstandthecentralissuesininductivedatabases.Thisworkshopaimedtobring together database and data mining researchers and practitioners who are int- ested in the numerous challenges that inductive databases o?ers. This workshop followed the previous two workshops: KDID 2002 held in Helsinki, Finland, and KDID 2003 held in Cavtat-Dubrovnik, Croatia.
Choose an application
Database management. --- Artificial intelligence. --- Database Management. --- Artificial Intelligence. --- Database management --- Database searching --- Data mining
Choose an application
Database management. --- Artificial intelligence. --- Database Management. --- Artificial Intelligence. --- Database management --- Database searching --- Data mining
Listing 1 - 10 of 28 | << page >> |
Sort by
|