Narrow your search

Library

KU Leuven (51)

KBR (1)


Resource type

dissertation (50)

book (1)


Language

English (42)

Dutch (7)

Undetermined (2)


Year
From To Submit

2024 (1)

2023 (3)

2022 (3)

2021 (1)

2020 (2)

More...
Listing 1 - 10 of 51 << page
of 6
>>
Sort by

Dissertation
Structural and functional properties of amylose-lipid complexes and their applications.
Authors: --- --- ---
ISBN: 9789088261466 Year: 2010 Publisher: Leuven K.U.Leuven. Arenberg doctoraatsschool wetenschap & technologie

Loading...
Export citation

Choose an application

Bookmark

Abstract

Amylose, het voornamelijk lineaire zetmeelpolymeer, kan inclusiecomplexe n vormen met bepaalde lipiden. Amylose-lipidecomplexen worden bekomen bi j opwarmen van een waterrijk zetmeelsysteem in aanwezigheid van endogene of toegevoegde lipiden. Hun voorkomen en structuur werd reeds bestudeer d. Over de functionaliteit van de complexen zelf is echter niet veel gek end. In dit werk werden amylose-lipidecomplexen gesynthetiseerd met een aan onze Eenheid ontwikkelde semi-enzymatische methode (Gelders et al., 2005b). Dit resulteert in redelijk monodisperse korte-keten complexen, d ie kunnen beschouwd worden als ideale modelsystemen voor het bestuderen van de structuur, enerzijds, en mogelijke toepassingen in zetmeelhoudend e voedingssystemen, anderzijds. Deze studie richtte zich vooreerst op de impact van verschillende reacti eparameters (de enzymdosering en molaire verhouding van substraat tot 'primer', en lipidetype, -ketenlengte en -onverzadigingsgraad) op zowel he t verloop van de synthesereactie als de eigenschappen van de bekomen com plexen. Hiermee werden de verschillende stappen in de semi-enzymatische synthese doorgrond en de achterliggende oorzaken voor de vastgestelde ei genschappen van de gesynthetiseerde korte-keten amylose-lipidecomplexen ontrafeld. Eén welbepaalde combinatie van parameters werd gekozen voor de grootscha lige productie van amylose-glycerol monostearaatcomplexen. De hiermee ge vormde type I complexen, en hun thermische en structurele eigenschappen tijdens en na omvorming tot beter geordende type IIa en IIb complexen, w erden uitvoerig bestudeerd. Elk complex type is opgebouwd uit geaggregee rde amylosehelices. Type I amylose-lipidecomplexen bleken opgebouwd te z ijn uit U-vormige amyloseketens met een laagdikte overeenstemmend met twee lipidemoleculen per amyloseketen. Door het ontvouwen van de ketens en een verdubbeling van de laagdikte, werden type I complexen omgevormd to t meer kristallijne type IIa complexen. Dit complextype bevat vier lipid en per helix. In type IIb werden hier nog twee lipiden aan toegevoegd en nam de kristaldikte verder toe. De dikte van de kristallagen en de hoeveelheid water er tussenin bepaalde de stabiliteit van de complexen. In h et algemeen kan gesteld worden dat smelten en herkristalliseren structur ele overgangen in amylose-lipidecomplexen teweeg brengen. De efficiëntie van omzetten hangt af van de temperatuur, de duur van de hittebehandeli ng en het vochtgehalte tussen de lagen. Zowel type I als type IIa complexen werden vervolgens gebruikt als addit ief in zetmeel-gebaseerde model- en voedingssystemen. Hun functionalitei t werd bestudeerd en vergeleken met die van zuiver lipide en polydispers e lange-keten amylose-lipidecomplexen. Die werden gesynthetiseerd door langere amyloseketens te laten complexeren met glycerol-monostearaat (Gal loway et al., 1989) en worden meestal beschreven in de literatuur. Toediening van zuiver lipide of type I complexen aan opgewarmde en afgek oelde water-zetmeeldispersies leidde tot de sterkste reologische verschi llen. De gecontroleerde vrijstelling van korte amyloseketens uit type I complexen induceerde hoogstwaarschijnlijk de vorming van dubbele helices en, als dusdanig, van een netwerk. Dit werd waargenomen als hogere visc ositeiten. De nanostructurele aspecten van het 'pasten' en geleren van deze stalen werden verder onderzocht door reometrie met in situ kleine hoek X-stralen-verstrooiing (SAXS) te combineren. De SAXS-patronen werd en geanalyseerd als verdunde dispersies van lange 'scatterers', geïnterpreteerd als aggregaten van amylose dubbele helices. De grootte en het to taal volume van de scatterers steeg evenredig met de opslagmodulus. Dit effect was additief-onafhankelijk. De gelering werd bovendien versneld in aanwezigheid van type I amylose-lipide-complexen. De korte amylosefragmenten die vrijgesteld werden tijdens het opwarmen van een complexhoudende zetmeeldispersie verhoogden het volume en de concentratie van korte(re) verknopingsentiteiten (in vergelijking met de referentiegel). Dit stimuleerde de vorming van een sterker netwerk tijdens koelen. Type II amy lose-lipidecomplexen beïnvloedden de reologie niet zo sterk. Deze complexen waren inert in het zetmeelsysteem, aangezien hun smelttemperatuur (ver) boven de experimentele temperaturen uitstak. Naast hun (mogelijke) impact op de reologie, beïnvloedden de toegediende complexen ook de gevoe ligheid van zetmeel ten opzichte van in vitro enzymatische vertering. Toevoegen van zuiver lipide verlaagde de concentratie enzymweerstandig zetmeel in de gelsystemen door interactie van het lipide met uitgeloogde amyloseketens. De aanwezigheid van type I of type II amylose-lipidecomp lexen, daarentegen, verhoogde de hoeveelheid enzymweerstandig zetmeel. Tenslotte werd de impact van deze additieven op de broodbereiding onderzocht. Toediening van (type I of type II) amylose-lipidecomplexen aan de broodreceptuur resulteerde in een kleiner broodvolume. De invloed van ty pe I complexen op de concentratie enzymweerstandig zetmeel in brood bleek afhankelijk van de synthesemethode en de eigenschappen van de complexe n. Type II complexen, daarentegen, gaven altijd, ongeacht de wijze waaro p ze gesynthetiseerd werden, aanleiding tot een lagere enzymatische zetm eelvertering. Preliminaire testen toonden bovendien een mogelijk effect van amylose-lipidecomplexen op de amylopectineretrogradatie tijdens bewa ring van brood aan. Type I complexen leken de retrogradatie te verlagen, terwijl type II complexen tot meer intense retrogradatie aanleiding zou den geven. Deze resultaten toonden aan dat type I amylose-lipidecomplexe n wellicht kunnen gebruikt worden om netwerk-sterkte in zetmeelgels te v erhogen, terwijl type II complexen vooral de enzymdegradeerbaarheid van het zetmeel in waterige gelsystemen en in minder vochtige voedingssystem en ver

Keywords


Dissertation
Nano-Engineered Polymer-Steel Hybrids : Chemical and Physical Compatibilization
Authors: --- --- ---
ISBN: 9789086497942 Year: 2015 Publisher: Leuven KU Leuven. Faculteit wetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

The exploitation of the toughness of steel in steel-polymer hybrids in structuralapplications is limited due to the huge difference in stiffness of thereinforcement (200 GPa for steel) compared to the polymer matrix (between 1 and3 GPa only). This stiffness mismatch leadsto stress concentrations at thesteel-polymer interface, which give rise to either early interface fracture orplastic yielding. The guiding hypothesis within this PhD research, whichfocuses on the optimization of polymer-steel hybrids, is that it is necessaryto decrease the polymer-steel stiffness mismatch and that the steel-polymeradhesion as well as the polymer toughness and/or yield stress in theinterphasial region need to be improved.


Dissertation
The impact of hydrotropes and glucose on starch gelatinization
Authors: --- ---
Year: 2023 Publisher: Leuven KU Leuven. Faculteit Wetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Starch, found in many plants, is a complex carbohydrate that serves as a source of energy. Next to the two main components: amylose (AM) and amylopectin (AP), it also has noncarbohydrate components present such as lipids, proteins, ... AM is a linear polymer containing α-(1,4)-glycosidic linkages that can form inclusion complexes with lipids or salicylic acid (obtained from sodium salicylate (NaSal)). AP, which is highly branched, also contains α-(1-6)-glycosidic linkages. Native maize starch has A-type crystallinity through the AP chains that are crystallized in a monoclinic lattice. The presence of these inclusion-complexes leads to V-type crystallinity. Upon heating starch in the presence of water, starch gelatinization occurs in which starch granules absorb water, swell, and burst, releasing AM and AP molecules into the medium. This will lead to the loss of their semi-crystalline structure which can be observed with small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD). The gelatinization temperature (Tgel) can change due to the amount of water present or certain additives, like glucose or NaSal. These changes can be monitored with differential scanning calorimetry (DSC). Glucose is known for increasing Tgel while the hydrotrope (NaSal), an organic molecule that enhances solubility, decreases it. The amount of water will change the shape of the DSC peaks. In excess water, only one peak is formed, G endotherm, while in limited water, two peaks are formed, G and M1 peaks. An M2 peak is seen in the presence of AM-inclusion complexes. This research can be interesting as starch is crucial in the food industry but also in e.g. medicines, glue, etc. The search for less sugar in food and baked goods is nowadays a ‘hot topic’, but the amount of sugar influences the gelatinization temperature which can alter the final baked product. For glues and the other mentioned industries, it can be beneficial to lower the gelatinization temperature (e.g. addition of NaSal) so no heating is required. This research shows transient gelatinization stages in excess and limited water conditions in which part of the semicrystalline blocklets are converted to fully gelatinized starch while others remain as layered stacks in which the dense layers are ordered like smectic liquid crystals. In excess water conditions granules in the transient stage rapidly convert into fully gelatinized starch. However, in limited water conditions, the gelatinization process is arrested up to when gelatinization is resumed at higher III temperatures. At first sight, the involvement of a liquid crystalline state aligns with the side-chain liquid crystalline polymer (SCLP) model. However, unlike the SCLP model, the G and M1 endotherms do not seem to be strictly coupled with a helix-helix dissociation and a subsequent helix-coil transition. The double melting behaviour under limited water conditions thus seems to be related to a temporary arrest rather than to a split into two mechanistically different gelatinization steps (dissociation and helix unwinding). As expected, glucose indeed raises the gelatinization temperature while NaSal decreases it down to room temperature when enough NaSal is added. The glucose molecules, that are dissolved in water, seem to penetrate the starch granules when the granules are submerged into the aqueous glucose solution.

Keywords


Dissertation
Crystallization and melting of polyethylenes studied by Small-Angle Laser Light Scattering
Authors: --- ---
Year: 2023 Publisher: Leuven KU Leuven. Faculteit Wetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Polyethylene is a generic term for a variety of ethylene-based (co)polymers with different molecular architectures. In this thesis the crystallization and melting behavior of a high-density polyethylene and a homogeneous ethylene-1-octene copolymer containing 5.5 mol% 1-octene (EO5) is investigated. A binary blend consisting of 25 wt% HDPE and 75 wt% EO5 considered as a model system for linear low-density polyethylene (LLDPE) is investigated as well. Differential scanning calorimetry (DSC) is used to study the thermal behavior of the materials, while time-resolved small-angle laser light scattering (SALLS), synchrotron small-angle X-ray scattering (SAXS), and wide-angle X-ray diffraction (WAXD) allow morphological characterization at the nanometer and micrometer scales, and polarized optical microscopy (POM) allows visual observation of the morphology at the micrometer scale. A special focus is given to SALLS, a powerful technique for studying the supramolecular crystal structure (such as spherulites) of polymers, which is currently not commonly used for unclear reasons. Therefore, a goal of this thesis is to demonstrate the benefits of this technique to enable it wider use in the future. From independent DSC, SALLS and SAXS/WAXD experiments on HDPE and EO5 during cooling and subsequent heating at a rate of 10 °C/min, several observations are made regarding their crystallization and melting behavior. The primary crystallization of HDPE involves the formation of likely open spherulites that fill the space completely. On further cooling, secondary crystallization occurs by thickening of the crystallites. Thinning of the crystals due to surface melting is observed during subsequent heating. In the case of EO5, due to its homogeneous nature, it may form compact, volume-filling spherulites. Secondary crystallization is observed to perceive in two stages: insertion of new lamellae followed by the crystallization of the copolymer chains with the highest comonomer content into randomly oriented small crystallites at lower temperatures. Melting occurs in reverse order, with small crystallites melting first at low temperatures, followed by thicker crystals at higher temperatures. The influence of increasing cooling rate (5, 10, 20 and 50 °C/min) on the segregation of the HDPE and EO5 in a 25/75 (w/w) melt miscible HDPE/EO5 blend is investigated with the use of DSC, SALLS and POM. During cooling, initially the HDPE component of the blend undergoes primary crystallization, forming volume-filling spherulites. At this stage, the copolymer chains that are still amorphous may segregate into small areas inside of the HDPE spherulites. At lower temperatures, the EO5 might crystallize on the HDPE crystals. Additionally, at even lower temperatures, the copolymer chains containing a higher amount of comonomer may crystallize into small randomly oriented crystals. Based on the observations from the SALLS experiments, it is likely that the copolymer segregates into smaller regions as the cooling rate increases. At rates of 5, 10, 20 and 50 °C/min no evidence of co-crystallization of the components in the blend is observed. This lack of co-crystallization is possibly due to the highly homogeneous structure of the ethylene-1-octene copolymer used in this study. The SALLS setup is optimized and successfully used to observe secondary crystallization in the polyethylenes and segregation in the binary polyethylene blend.

Keywords


Dissertation
Kristallisatiegedrag en morfologie van laser sinterbare polyamides
Authors: --- --- ---
Year: 2014 Publisher: Leuven : KU Leuven. Faculteit Wetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

De Additive manufacturing (of '3D printing') technologie is een veelbelovende technologie met toepassingen die gaan van auto-prototypes, tot luchtvaartonderdelen en tot levensreddende toepassingen in de medicinale wereld. Een 3D-printer zet computerontwerpen om in driedimensionale objecten door het object laag per laag op te bouwen. De technologie staat echter op een punt waar onderzoek verricht moet worden naar nieuwe materialen om deze technologie naar een hoger niveau te brengen. Er bestaan verschillende methodes bij het 3D-printen maar in dit proefschrift wordt gefocust op laser sintering. Deze techniek maakt gebruik van het sinterproces waar met behulp van een laser laag na laag een polymeerpoeder gesmolten wordt tot een vast product. Het materiaal dat momenteel het meest gebruikt wordt voor 3D-printen is polyamide 12. Van dit polymeer is men zeker dat het makkelijk sinterbaar is. De eigenschappen van dit polymeer zullen in dit proefschrift als referentie dienen voor het vinden van nieuwe materialen. In dit proefschrift worden een aantal hypothesen, gerelateerd aan de morfologie van gesinterde polyamiden, onderzocht. Een eerste hypothese betreft de veronderstelde relatie tussen de kristaldikte, het smeltpunt (gerelateerd aan de operating window) en de kristalliniteit (waarvan tijdelijke of ruimtelijke verschillen ongewenste vervorming veroorzaken) anderzijds. Deze operating window is het venster, ingesloten tussen de smelt- en kristallisatietemperatuur, van het polymeer. Het moet bij voorkeur zo breed mogelijk zijn, zodat het polymeer niet te snel kristalliseert en er geen kromtrekking kan voorkomen. Door verschillende thermische protocollen op te leggen is het mogelijk om de polymeerkristaldikte te veranderen. Dit werd toegepast voor zowel polyamide 12 als voor polyamide 6, maar de beste resultaten werden verkregen voor polyamide 12. Zoals verwacht leiden dikkere kristallen naar hogere smeltpunten. De kristallisatietemperatuur verschuift ook naar hogere temperaturen maar echter niet in dezelfde mate zodat een grotere operating window verkregen wordt. Een tweede hypothese stelt dat het nuttig kan zijn om een mengsel van polyamiden te gebruiken met twee verschillende smeltpunten. Dergelijke mengsels kunnen het sinterproces verbeteren indien ze tijdens smelten het hoogste smeltpunt niet overschrijden. Bijgevolg zou de vaste fractie de krimp bij afkoeling minimaliseren. Een bimodaal smeltpunt werd verkregen voor alle mengsels maar de brede tweede smeltpiek is nadelig voor het smeltproces. Echter kan deze hypothese nog steeds veelbelovend zijn als een combinatie van polymeren gevonden kan worden met een goede spreiding in smeltpunten. Een andere manier om de krimp te minimaliseren is door het gebruik van random copolymeren van twee polyamiden. Er wordt van dergelijke copolymeren verwacht dat ze naast een vloeibaar amorf, ook een belangrijke fractie van vast amorf materiaal bevatten. De verminderde kristalliniteit en de grotere vaste amorfe fractie zal leiden tot een kleinere sprong in dichtheid tijdens het stollen resulterend in een kleinere krimp. De huidige resultaten geven aanwijzingen tot het bestaan van deze fractie, maar moeten nog versterkt worden. De hierboven vermelde hypothesen werden getest met behulp van DSC, X-stralen en NMR metingen.

Keywords


Dissertation
Towards a better understanding of amylose isolation and production, semicrystalline aggregation and potential pharmaceutical use
Authors: --- --- ---
Year: 2017 Publisher: Leuven KU Leuven. Faculty of bioscience engineering

Loading...
Export citation

Choose an application

Bookmark

Abstract

Amylose (AM) is an almost linear glucose polymer. Together with amylopectin (AP), it makes up the bulk of granular starch. The AM content in regular starches ranges from 20 to 35%. It greatly influences the functionality of starch in aqueous systems. In fully gelatinized starch dispersions, AM crystallization plays a major role in gelation. In many food preparation protocols, AM network formation starts immediately after starch gelatinization. Connected cylindrical objects and ultimately fractal structures are formed by aggregation of AM and the outer branches of AP. These structural transitions are exploited to provide texture to different food products. AM crystallization has also been used to produce type III enzyme resistant starch (RS), a type of starch that resists digestion, is fermentable in the colon and has several potential health benefits.^ AM crystallization depends on factors such as its average degree of polymerization (DP), its concentration in the suspension, the temperature and time. Its concentration determines the type of crystal arrangement which it adopts. While in diluted [typically < /10.0% (w/v)] aqueous systems AM arranges into lamellar platelets, spherulitic crystal arrangements are observed in concentrated [typically >10.0% (w/v)] systems. These crystal architectures resist digestion by pancreatic α-amylase. However, they are fermentable by the microbiota in the human colon. Despite the relevance of AM as a standalone polymer, the underlying mechanisms of its aggregation have mainly been investigated in starch systems, which by their own nature also contain AP.^ Against this background, this doctoral dissertation aimed to provide a better understanding of the production or isolation of AM and its physico-chemical properties in order to provide a basis for exploiting AM crystallinity in the development of potential applications in and beyond the food industry. A method for producing pure AM on laboratory scale was needed for studying the mechanisms of AM aggregation. Thus, the first part of this dissertation focused on producing or isolating AM. Three main in vitro approaches were considered for obtaining AM: enzymatic synthesis, AM leaching, and AM complexation following starch dispersion. However, the production or isolation of AM is not a simple task. The properties (i.e., purity, average DP and polydispersity) of isolated AM are influenced by the experimental conditions in each methodology. Aqueous leaching allows isolating AM on large scale and involves heating a starch suspension above the starch gelatinization temperature.^ Different factors influence leaching of AM, including the leaching temperature (LT) and starch concentration. A response surface analysis with a face centered central composite design was implemented to study the effect of maize (Zea mays L.) starch concentration [3.0–7.0% (w/v)] and LT (70–90 ˚C) on aqueous leaching of AM as a way to optimize the conditions for obtaining the highest yield of long chain AM [number average DP (DPn) ranging from 860 to 930] and highest purity. Second order empirical models were fitted via the least squares approach. Negligible terms were removed using backwards model reduction. Negligible lack of fit terms were obtained for the responses total leached carbohydrate and DPn. The optimization was complemented with a desirability test using the purity of the extracts. As optimization targets, maximum leachate yields, DPn ≈ 900, and purity > 95% were set.^ Contour plots and prediction profilers were obtained and can be used by others for tailor made production of leachates. LT had the most significant effect as yields and DPn increased with temperature at the expense of purity. Purity was highly compromised when treatments were at temperatures exceeding 85 ˚C. This was reflected in the high DPn values (> 1,500) which suggested the presence of AP material. When using 3.0% (w/v) maize starch suspension at an LT of 81 °C, the largest yield (15.0%, starch basis) of high DPn AM chains (DPn ≈ 900) and less than 3.3% of non-AM material were obtained. The effect of starch crystallinity on the aqueous leaching of AM was also studied. Starch crystal stability was altered via annealing. Leaching was studied in a 60-90 °C temperature range. The leachate yield, average DP and purity were related to the extent of melting of the starch crystals at the LT as determined via differential scanning calorimetry (DSC).^ Annealing increased the AP crystal stability and hence the remaining crystallinity at a given LT. Negligible AM leaching occurred at temperatures below those of the annealing dependent onset of melting. Leaching thus benefited from partial melting. Similar AM leachates were obtained when the extent of starch melting was below 80%. Loss of more than 95% of the melting enthalpy resulted in higher leachate average DP at the expense of purity. As the crystallinity of annealed starches at a given LT was higher than that of the native starches, the purity of leachates obtained from such starches was higher. Although no residual AP crystals remained at 90 °C, annealed starches subjected to leaching at such temperature still yielded AM extracts in higher yields and of higher purity than did native starch. More effective leaching in this case may be due to annealing-induced strengthened AP-AP interactions and AM disentanglement from AP.^ The second part of this work focused on the semicrystalline aggregation of AM. While previous studies had elucidated the role of AM average DP on its aggregation in diluted aqueous systems, no reports have elaborated on the crystallization of AM in concentrated systems. Here, AM samples with different weight average DP (DPw) were produced and subjected to a heating-cooling-heating process. Since AM crystals only melt at temperatures exceeding 100 °C, high-pressure devices were used to analyze the hydrated samples. High (DPw = 830), mid (DPw = 340), and low (DPw = 60) DP AM aqueous dispersions [25.0% (w/v)] were first heated to 180 ˚C to produce fully dissolved aqueous solutions of AM. During subsequent cooling to ambient temperature and re-heating to 180 ˚C, their thermal and structural transitions were studied by DSC and X-ray diffraction at small (SAXS) and wide (WAXD) angles.^ During cooling, spherulitic crystal aggregates were formed the sizes of which decreased in the order mid DP > low DP > high DP AM. The crystallization events also depended on AM DP. Mid DP AM crystals were formed at high temperatures and its exothermic transition peaked at 74 ˚C. Those from low and high DP AM were formed below 60 °C with peaks at 37 and 42 °C respectively. A second (small) fraction was visible for low DP AM and it appeared close to the observed high temperature transition for mid DP. During the subsequent heating, mid DP AM crystals were the most stable and their melting signal peaked at 156 °C. Low DP AM crystals melted in two broad temperature ranges with peaks at 104 °C (large fraction) and 150 °C (small fraction). Those from high DP AM melted in a similar range as the low temperature signal for low DP AM.^ Time-resolved SAXS and WAXD measurements were implemented for the first time to reveal the nanostructural transitions of AM during the formation and disappearing of semicrystalline spherulites from low and mid DP AM. WAXD measurements revealed B-type AM crystals besides amorphous material, regardless of the temperature. Changes in the crystallinity index occurred in the temperature ranges where DSC revealed exo or endothermic transitions. Inter-crystallite interference was found in SAXS for low DP AM while this was not the case for mid DP AM. Mid DP AM spherulites were classified as open (no interference) while those of low DP AM as compact (with interference). Open spherulites had a lower internal crystallinity (below 20 %) than the compact ones (up to 80 %) but were able to fill the space completely at the end of cooling. Open spherulites from mid DP AM started from the crystallization of AM within a homogeneous liquid phase.^ This forms AM depletion zones around the crystals at a high crystallization rate. At lower temperatures spherulites grow and new ones are created at a lower rate. Here the liquid phase can follow the pace and can homogenize concomitantly. In the case of low DP AM spherulites, open spherulites similar to those from mid DP AM are first formed at high temperatures. During further cooling, the system separates into AM-rich and –poor liquid phases. Spherulites migrate to the AM-rich zone and further AM crystallization occurs rapidly turning the aggregates into compact spherulites. For high DP AM it was proposed that chain entanglement might inhibit the formation of large and ordered aggregates at high temperatures. Instead, liquid-liquid phase separation is favored and the crystallization of AM into small, disordered spherulites takes place in the AM-rich zone. In a third and final part, the crystallinity of AM was exploited in the development of a potential pharmaceutical application.^ Type III RS from debranched cassava (Manihot esculenta Crantz) starch was produced by favoring AM crystallization in a hydrothermal treatment. A thermostable crystal fraction was formed. Indeed, type III RS crystal melting was only observed at temperatures exceeding 120 °C. RS levels measured via in vitro digestion increased from 36.6 (in the starting material) to 95.1% (in the final type III RS product). RS levels were positively correlated to the degree of crystallinity. Type III RS was highly fermentable in vitro by human fecal microflora and resulted in a significant production of short chains fatty acids. Acetate levels were much more increased than those of propionate and butyrate when compared to their levels noted for a fecal blank. A granulate of type III RS [60 - 70 % (w/w)] and ethyl cellulose [40 - 30 % (w/w)] was used to coat tablets of 5-aminosalicylic acid (5-ASA


Dissertation
Fast scanning (chip-) calorimetry and synchrotron WAXD to study the crystallization of poly(vinylidene fluoride) and its copolymers
Authors: --- ---
Year: 2016 Publisher: Leuven KU Leuven. Faculteit Wetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Polyvinylideen fluoride (PVDF) is een semikristallijn polymeer met belangrijke potentiële toepassingen gaande van sensoren in robots tot ultrasone transductoren gebruikt voor medische beeldvorming dankzij zijn uiteenlopende eigenschappen waaronder chemische stabiliteit en hoge mechanische sterkte. PVDF komt voor in verschillende kristal modificaties (polymorfen) al is enkel de β-polymorf in de praktijk van belang. Dit polymorf bezit namelijk pyroelektrische, piezoelektrische en ferroelektrische eigenschappen die belangrijk zijn voor respectievelijk volgende toepassingen: infrarood detectoren, luidsprekers en RAM. Het is dus uiterst belangrijk om de condities in kaart te brengen die aanleiding geven tot vorming van de β-fase. Een mogelijkheid om de vorming van dit polymorf te vergemakkelijken is het invoeren van trifluoroethyleen (TrFE) defecten ter vorming van een P(VDF-TrFE) copolymeer. Fast scanning chip calorimetrie (FSC) is een belangrijke techniek om het kristallisatie- en smeltgedrag te bestuderen. Het stelt ons in staat om de monstertemperatuur nauwgezet op te volgen wat noodzakelijk is om lage isotherme temperaturen in combinatie met hoge koelingsnelheden te bereiken. Deze omstandigheden geven de hoogste kansen om de β-fase te vormen. De gevormde polymorfen worden tijdens het doorlopen van het opgesteld temperatuursprofiel gevolgd met behulp van grote hoek X-stralen diffractie (WAXD). Het simultaan gebruik van FSC en WAXD vereist een gesofisticeerde setup gebruik makende van synchrotron straling die aan het ESRF in Grenoble ter beschikking wordt gesteld. Aanvullende experimenten werden gedaan met differentiële scanning calorimetrie (DSC), WAXD en FSC aan de KU Leuven om nadien de resultaten aan te vullen en te vergelijken met deze bekomen aan het ESRF. Uiteindelijk is er gebleken dat PVDF geen β-kristallen heeft gevormd in tegenstelling tot de P(VDF-TrFE) copolymeren. Onder bepaalde omstandigheden werden dus β-kristallen gevormd al dan niet in combinatie met α-kristallen of met een andere β-fractie met hogere densiteit.

Keywords


Dissertation
Structure and Stability of Specialty Lipids : A quest for polymer-like mesomorphic phases
Authors: --- ---
Year: 2010 Publisher: Leuven K.U.Leuven. Faculteit Wetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Dissertation
Kristalliniteit en semikristallijne morfologie van homogene propeen-1-penteen copolymeren.

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Dissertation
Study of the crystallization behavior and morphology of PCCD-PTHF segmented block copolymers
Authors: --- --- ---
Year: 2022 Publisher: Leuven KU Leuven. Faculteit Wetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Amphora SP1621 is a newly developed copolymer that is mainly used in 3D printing via a selective laser sintering (SLS) process. It is a segmented block copoly(ether ester) that is built out of PCCD and PTHF segments. If the material is cooled, the former segments crystallize, whereas PTHF is non-crystallizable and forms the amorphous phase. This results in a random distribution of hard and soft segments. Amphora SP1621 is a commercially available polymer that contains additives such as traces of PS, flow agents and antioxidants, to improve processing. Amphora SP1621 without these additives is referred to as the base material PCCE. This thesis is part of a larger research project, named the Green Additive Manufacturing (AM) project. This initiative strives to develop a more sustainable 3D printing process. One of the focus areas of the Green AM project is the use of materials that can be recycled more efficiently, such as Amphora SP1621. In order to optimize the printing parameters of the SLS process, it is important to have a thorough understanding of the thermal behavior of this material. To our knowledge, no prior studies have been conducted on the crystallization behavior of PCCD-PTHF segmented block copolymers. Literature only reports studies on PCCD and PTHF separately. Hence, in this thesis project, the crystallization behavior and morphology of the material with (Amphora SP1621) and without (PCCE) additives, are investigated using TGA, DSC, Flash DSC, and POM. By comparing the thermal behavior of both materials, the influence of the additives on PCCD-PTHF is investigated. In addition, isothermal crystallization studies on PCCE are performed to study the effect of PTHF on the crystallization kinetics of PCCD. Both Amphora SP1621 and PCCE are provided by Eastman Chemical Company.

Keywords

Listing 1 - 10 of 51 << page
of 6
>>
Sort by