Narrow your search

Library

KU Leuven (4)

UGent (4)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULiège (3)

VIVES (3)

FARO (2)

LUCA School of Arts (2)

More...

Resource type

book (9)

digital (1)


Language

English (10)


Year
From To Submit

2022 (1)

2021 (7)

2016 (2)

Listing 1 - 10 of 10
Sort by

Book
Bioactive Molecules from Extreme Environments
Author:
ISBN: 3036505644 3036505652 Year: 2021 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Bioactive Molecules from Extreme Environments II
Author:
ISBN: 3036527184 3036527192 Year: 2021 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Bioactive Molecules from Extreme Environments
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The papers included in this Special Issue "Bioactive Molecules from Extreme Environments" provide an overview of the growing interest in species biodiversity, highlighting the importance of marine extreme environments as sources of a unique marine chemical diversity of molecules. It is worth noting that six articles in this Special Issue are focused on molecules and enzymes isolated from Antarctica. This means that there is a growing interest in this habitat, most probably due to being perceived as an important source of drug discovery. In fact, the unique environment and ecological pressures of marine polar regions might be the major drivers of a selection of unique biological communities that are able to biosynthesize new compounds with diverse biological activities. It is expected that, in the near future, more marine molecules from polar regions, as well as from other extreme habitats, will find their way into biomedical and biotechnological applications.


Book
Bioactive Molecules from Extreme Environments
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The papers included in this Special Issue "Bioactive Molecules from Extreme Environments" provide an overview of the growing interest in species biodiversity, highlighting the importance of marine extreme environments as sources of a unique marine chemical diversity of molecules. It is worth noting that six articles in this Special Issue are focused on molecules and enzymes isolated from Antarctica. This means that there is a growing interest in this habitat, most probably due to being perceived as an important source of drug discovery. In fact, the unique environment and ecological pressures of marine polar regions might be the major drivers of a selection of unique biological communities that are able to biosynthesize new compounds with diverse biological activities. It is expected that, in the near future, more marine molecules from polar regions, as well as from other extreme habitats, will find their way into biomedical and biotechnological applications.


Book
Bioactive Molecules from Extreme Environments II
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue, as a continuation of the previous Special Issue, “Bioactive Molecules from Extreme Environments” (https://www.mdpi.com/journal/marinedrugs/special_issues/Extreme_Environments accessed on 4 November 2021), includes 10 research articles and 2 reviews, providing a wide overview of the chemical biodiversity offered by different marine organisms inhabiting extreme environments to be used for biotechnological and pharmaceutical applications. The six articles in this Special Issue are focused on the polar regions, which represent an untapped source of marine natural products and are still largely unexplored compared to more accessible sites. Many of these articles refer to Antarctica, which is the coldest and most inaccessible continent on the Earth, where extreme temperatures, light and ice have selected biological communities with a unique suite of bioactive metabolites. The marine organisms of Arctic and Antarctic environments are a reservoir of natural compounds, exhibiting huge structural diversity and significant bioactivities that could be used in human applications.

Keywords

Arctic/Antarctic --- marine bioprospecting --- marine natural product --- terpene --- terpenoid --- biotechnological application --- drug discovery --- microalgae --- Muriellopsis --- spray drying --- freeze-drying --- lutein --- supercritical fluid extraction --- cyclic tripeptides --- antibacterial --- Antarctica sponge-derived fungus --- Aspergillus insulicola --- psychrophiles --- Antarctic bacteria --- Lipopolysaccharide (LPS) --- lipid A --- structural characterization --- MALDI-TOF mass spectrometry --- marine natural products --- Mollusca --- Gastropoda --- chemical ecology --- crustin --- antimicrobial peptides --- shrimp --- deep-sea hydrothermal vent --- deep-sea microorganism --- fungus --- Penicillium griseofulvum --- anti-food allergy --- fungal metabolites --- Paenibacillus --- Arctic --- Svalbard --- Marfey’s method --- DP4 calculation --- quinone reductase --- lipopeptide --- 3-amino-2-pyrrolidinone --- green synthesis --- biomaterials --- metal --- antibiotics --- nanotechnology --- deep sea natural products --- Mariana Trench --- Dermacoccus abyssi MT 1.1T --- 13C-NMR chemical shift linear and multiple regression --- (DFT)-UV-Vis spectral calculation --- phenoxazine --- dermacozine --- absorption maxima in the near infrared region --- Antarctica --- sponges --- mycalols --- marine biotechnology --- antifungal activity --- Bacillus amyloliquefaciens --- Panama disease --- Fusarium oxysporum f. sp. cubense --- bioactive compound --- iturin A5 --- n/a


Book
Bioactive Molecules from Extreme Environments II
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue, as a continuation of the previous Special Issue, “Bioactive Molecules from Extreme Environments” (https://www.mdpi.com/journal/marinedrugs/special_issues/Extreme_Environments accessed on 4 November 2021), includes 10 research articles and 2 reviews, providing a wide overview of the chemical biodiversity offered by different marine organisms inhabiting extreme environments to be used for biotechnological and pharmaceutical applications. The six articles in this Special Issue are focused on the polar regions, which represent an untapped source of marine natural products and are still largely unexplored compared to more accessible sites. Many of these articles refer to Antarctica, which is the coldest and most inaccessible continent on the Earth, where extreme temperatures, light and ice have selected biological communities with a unique suite of bioactive metabolites. The marine organisms of Arctic and Antarctic environments are a reservoir of natural compounds, exhibiting huge structural diversity and significant bioactivities that could be used in human applications.

Keywords

Research & information: general --- Chemistry --- Arctic/Antarctic --- marine bioprospecting --- marine natural product --- terpene --- terpenoid --- biotechnological application --- drug discovery --- microalgae --- Muriellopsis --- spray drying --- freeze-drying --- lutein --- supercritical fluid extraction --- cyclic tripeptides --- antibacterial --- Antarctica sponge-derived fungus --- Aspergillus insulicola --- psychrophiles --- Antarctic bacteria --- Lipopolysaccharide (LPS) --- lipid A --- structural characterization --- MALDI-TOF mass spectrometry --- marine natural products --- Mollusca --- Gastropoda --- chemical ecology --- crustin --- antimicrobial peptides --- shrimp --- deep-sea hydrothermal vent --- deep-sea microorganism --- fungus --- Penicillium griseofulvum --- anti-food allergy --- fungal metabolites --- Paenibacillus --- Arctic --- Svalbard --- Marfey’s method --- DP4 calculation --- quinone reductase --- lipopeptide --- 3-amino-2-pyrrolidinone --- green synthesis --- biomaterials --- metal --- antibiotics --- nanotechnology --- deep sea natural products --- Mariana Trench --- Dermacoccus abyssi MT 1.1T --- 13C-NMR chemical shift linear and multiple regression --- (DFT)-UV-Vis spectral calculation --- phenoxazine --- dermacozine --- absorption maxima in the near infrared region --- Antarctica --- sponges --- mycalols --- marine biotechnology --- antifungal activity --- Bacillus amyloliquefaciens --- Panama disease --- Fusarium oxysporum f. sp. cubense --- bioactive compound --- iturin A5 --- Arctic/Antarctic --- marine bioprospecting --- marine natural product --- terpene --- terpenoid --- biotechnological application --- drug discovery --- microalgae --- Muriellopsis --- spray drying --- freeze-drying --- lutein --- supercritical fluid extraction --- cyclic tripeptides --- antibacterial --- Antarctica sponge-derived fungus --- Aspergillus insulicola --- psychrophiles --- Antarctic bacteria --- Lipopolysaccharide (LPS) --- lipid A --- structural characterization --- MALDI-TOF mass spectrometry --- marine natural products --- Mollusca --- Gastropoda --- chemical ecology --- crustin --- antimicrobial peptides --- shrimp --- deep-sea hydrothermal vent --- deep-sea microorganism --- fungus --- Penicillium griseofulvum --- anti-food allergy --- fungal metabolites --- Paenibacillus --- Arctic --- Svalbard --- Marfey’s method --- DP4 calculation --- quinone reductase --- lipopeptide --- 3-amino-2-pyrrolidinone --- green synthesis --- biomaterials --- metal --- antibiotics --- nanotechnology --- deep sea natural products --- Mariana Trench --- Dermacoccus abyssi MT 1.1T --- 13C-NMR chemical shift linear and multiple regression --- (DFT)-UV-Vis spectral calculation --- phenoxazine --- dermacozine --- absorption maxima in the near infrared region --- Antarctica --- sponges --- mycalols --- marine biotechnology --- antifungal activity --- Bacillus amyloliquefaciens --- Panama disease --- Fusarium oxysporum f. sp. cubense --- bioactive compound --- iturin A5


Book
Bioactive Molecules from Extreme Environments
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The papers included in this Special Issue "Bioactive Molecules from Extreme Environments" provide an overview of the growing interest in species biodiversity, highlighting the importance of marine extreme environments as sources of a unique marine chemical diversity of molecules. It is worth noting that six articles in this Special Issue are focused on molecules and enzymes isolated from Antarctica. This means that there is a growing interest in this habitat, most probably due to being perceived as an important source of drug discovery. In fact, the unique environment and ecological pressures of marine polar regions might be the major drivers of a selection of unique biological communities that are able to biosynthesize new compounds with diverse biological activities. It is expected that, in the near future, more marine molecules from polar regions, as well as from other extreme habitats, will find their way into biomedical and biotechnological applications.

Keywords

Medicine --- Latrunculia --- Antarctica --- deep-sea sponge --- molecular networking --- molecular docking --- discorhabdin --- Arctic/Antarctic environment --- biocatalysis --- cold-adaptation --- marine biotechnology --- deep sea --- extremophilic microorganisms --- extremozyme --- thermophilic enzyme --- psychrophilic enzyme --- halophilic enzyme --- piezophilic enzyme --- chitinase --- cold-adapted --- optimization --- antifungal --- Pseudomonas --- Deinococcus --- deinoxanthin --- carotenoid --- deep-sea --- extreme --- ecosystem --- fungi --- bioactive compounds --- secondary metabolites --- halophilic bacteria --- archaea and fungi --- biomolecules --- biomedicine --- antimicrobial compounds --- anticancer compounds --- green synthesis biomaterials --- silver nitrate --- antibiotics --- nanotechnology --- marine prokaryotes --- microbial diversity --- polyextremophiles --- deep hypersaline anoxic basins --- blue biotechnologies --- extremozymes --- limits of life --- Antarctic krill (Euphausia superba) --- genome survey --- mitochondrial genome --- whiteleg shrimp (Penaeus vannamei) --- antimicrobial peptide (AMP) --- antihypertensive peptide (AHTP) --- cypermethrin --- biosurfactants --- biodegradation capacities --- marine sediments --- Arctic/Antarctic --- deep hypersaline anoxic basin --- cold-adapted bacteria --- halophilic microorganisms --- marine natural product --- enzyme --- silver nanoparticle --- marine bioprospecting --- Latrunculia --- Antarctica --- deep-sea sponge --- molecular networking --- molecular docking --- discorhabdin --- Arctic/Antarctic environment --- biocatalysis --- cold-adaptation --- marine biotechnology --- deep sea --- extremophilic microorganisms --- extremozyme --- thermophilic enzyme --- psychrophilic enzyme --- halophilic enzyme --- piezophilic enzyme --- chitinase --- cold-adapted --- optimization --- antifungal --- Pseudomonas --- Deinococcus --- deinoxanthin --- carotenoid --- deep-sea --- extreme --- ecosystem --- fungi --- bioactive compounds --- secondary metabolites --- halophilic bacteria --- archaea and fungi --- biomolecules --- biomedicine --- antimicrobial compounds --- anticancer compounds --- green synthesis biomaterials --- silver nitrate --- antibiotics --- nanotechnology --- marine prokaryotes --- microbial diversity --- polyextremophiles --- deep hypersaline anoxic basins --- blue biotechnologies --- extremozymes --- limits of life --- Antarctic krill (Euphausia superba) --- genome survey --- mitochondrial genome --- whiteleg shrimp (Penaeus vannamei) --- antimicrobial peptide (AMP) --- antihypertensive peptide (AHTP) --- cypermethrin --- biosurfactants --- biodegradation capacities --- marine sediments --- Arctic/Antarctic --- deep hypersaline anoxic basin --- cold-adapted bacteria --- halophilic microorganisms --- marine natural product --- enzyme --- silver nanoparticle --- marine bioprospecting


Book
Marine Genomics : Methods and Protocols
Authors: ---
ISBN: 1071623133 1071623125 Year: 2022 Publisher: New York, NY : Springer US : Imprint: Humana,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This detailed volume provides an overview of recent advances in the application of genomic technologies in several domains of marine biology, raising awareness of various DNA- and RNA-based technologies. Genomic methods are essential in identifying previously undetected taxonomic (e.g. DNA barcoding), genetic (e.g. sequencing), and functional (e.g. gene expression, analysis of metabolites) diversity, as shown in the chapters of this book, with sections focusing on next generation sequencing (NGS) technologies, bioinformatics in marine genomics research, marine biotechnology, as well as a variety of methods successfully applied in fish. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Marine Genomics: Methods and Protocols highlights the utility of numerous lab protocols and their potential to provide deeper insight into physiological and ecological mechanisms in marine life.


Book
Fish4Knowledge: Collecting and Analyzing Massive Coral Reef Fish Video Data
Authors: --- --- --- ---
ISBN: 331930206X 3319302086 Year: 2016 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book gives a start-to-finish overview of the whole Fish4Knowledge project, in 18 short chapters, each describing one aspect of the project. The Fish4Knowledge project explored the possibilities of big video data, in this case from undersea video. Recording and analyzing 90 thousand hours of video from ten camera locations, the project gives a 3 year view of fish abundance in several tropical coral reefs off the coast of Taiwan. The research system built a remote recording network, over 100 Tb of storage, supercomputer processing, video target detection and tracking, fish species recognition and analysis, a large SQL database to record the results and an efficient retrieval mechanism. Novel user interface mechanisms were developed to provide easy access for marine ecologists, who wanted to explore the dataset. The book is a useful resource for system builders, as it gives an overview of the many new methods that were created to build the Fish4Knowledge system in a manner that also allows readers to see how all the components fit together.

Keywords

Computer Science --- Engineering & Applied Sciences --- Coral reef fishes --- Coral reef ecology --- Analysis. --- Coral reefs and islands --- Coral fishes --- Ecology --- Engineering. --- Artificial intelligence. --- Wildlife. --- Fish. --- Computational intelligence. --- Computational Intelligence. --- Artificial Intelligence (incl. Robotics). --- Fish & Wildlife Biology & Management. --- Intelligence, Computational --- Artificial intelligence --- Soft computing --- Fish --- Pisces --- Aquatic animals --- Vertebrates --- Fisheries --- Fishing --- Ichthyology --- AI (Artificial intelligence) --- Artificial thinking --- Electronic brains --- Intellectronics --- Intelligence, Artificial --- Intelligent machines --- Machine intelligence --- Thinking, Artificial --- Bionics --- Cognitive science --- Digital computer simulation --- Electronic data processing --- Logic machines --- Machine theory --- Self-organizing systems --- Simulation methods --- Fifth generation computers --- Neural computers --- Construction --- Industrial arts --- Technology --- Reef ecology --- Coral reef animals --- Reef fishes --- Computer vision. --- Wildlife management. --- Image Processing and Computer Vision. --- Artificial Intelligence. --- Animal populations --- Game management --- Management, Game --- Management, Wildlife --- Plant populations --- Wildlife resources --- Natural resources --- Wildlife conservation --- Machine vision --- Vision, Computer --- Image processing --- Pattern recognition systems --- Management --- Optical data processing. --- Optical computing --- Visual data processing --- Integrated optics --- Photonics --- Computers --- Optical equipment


Digital
Fish4Knowledge: Collecting and Analyzing Massive Coral Reef Fish Video Data
Authors: --- --- --- ---
ISBN: 9783319302089 Year: 2016 Publisher: Cham Springer International Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book gives a start-to-finish overview of the whole Fish4Knowledge project, in 18 short chapters, each describing one aspect of the project. The Fish4Knowledge project explored the possibilities of big video data, in this case from undersea video. Recording and analyzing 90 thousand hours of video from ten camera locations, the project gives a 3 year view of fish abundance in several tropical coral reefs off the coast of Taiwan. The research system built a remote recording network, over 100 Tb of storage, supercomputer processing, video target detection and tracking, fish species recognition and analysis, a large SQL database to record the results and an efficient retrieval mechanism. Novel user interface mechanisms were developed to provide easy access for marine ecologists, who wanted to explore the dataset. The book is a useful resource for system builders, as it gives an overview of the many new methods that were created to build the Fish4Knowledge system in a manner that also allows readers to see how all the components fit together.

Listing 1 - 10 of 10
Sort by