Listing 1 - 2 of 2 |
Sort by
|
Choose an application
Livestock --- Livestock improvement --- Breeding --- Statistical methods. --- Genetics --- Génétique --- genetics --- Amélioration des animaux --- Animal breeding --- Méthode statistique --- Statistical methods --- Méthodologie --- methodology --- Expérimentation --- experimentation --- Modèle --- Models --- Paramètre génétique --- genetic parameters --- Évaluation --- evaluation --- -Livestock --- -Livestock improvement --- -#ABIB:CHGS --- Improvement, Livestock --- Animal husbandry --- Farm animals --- Live stock --- Stock (Animals) --- Stock and stock-breeding --- Agriculture --- Animal culture --- Animal industry --- Domestic animals --- Food animals --- Herders --- Range management --- Rangelands --- -Statistical methods --- Improvement --- #ABIB:CHGS --- Breeding&delete& --- Genetics&delete& --- experimentation. --- evaluation. --- Livestock - Breeding - Statistical methods. --- Livestock - Genetics - Statistical methods. --- Livestock improvement - Statistical methods. --- Symposium --- Armidale --- 1987
Choose an application
Over the last ten years the introduction of computer intensive statistical methods has opened new horizons concerning the probability models that can be fitted to genetic data, the scale of the problems that can be tackled and the nature of the questions that can be posed. In particular, the application of Bayesian and likelihood methods to statistical genetics has been facilitated enormously by these methods. Techniques generally referred to as Markov chain Monte Carlo (MCMC) have played a major role in this process, stimulating synergies among scientists in different fields, such as mathematicians, probabilists, statisticians, computer scientists and statistical geneticists. Specifically, the MCMC "revolution" has made a deep impact in quantitative genetics. This can be seen, for example, in the vast number of papers dealing with complex hierarchical models and models for detection of genes affecting quantitative or meristic traits in plants, animals and humans that have been published recently. This book, suitable for numerate biologists and for applied statisticians, provides the foundations of likelihood, Bayesian and MCMC methods in the context of genetic analysis of quantitative traits. Most students in biology and agriculture lack the formal background needed to learn these modern biometrical techniques. Although a number of excellent texts in these areas have become available in recent years, the basic ideas and tools are typically described in a technically demanding style, and have been written by and addressed to professional statisticians. For this reason, considerable more detail is offered than what may be warranted for a more mathematically apt audience. The book is divided into four parts. Part I gives a review of probability and distribution theory. Parts II and III present methods of inference and MCMC methods. Part IV discusses several models that can be applied in quantitative genetics, primarily from a bayesian perspective. An effort has been made to relate biological to statistical parameters throughout, and examples are used profusely to motivate the developments.
519.226 --- 57.087.1 --- 575 --- Genetics --- -Monte Carlo method --- Markov processes --- Bayesian statistical decision theory. --- Bayes' solution --- Bayesian analysis --- Statistical decision --- Analysis, Markov --- Chains, Markov --- Markoff processes --- Markov analysis --- Markov chains --- Markov models --- Models, Markov --- Processes, Markov --- Stochastic processes --- Artificial sampling --- Model sampling --- Monte Carlo simulation --- Monte Carlo simulation method --- Stochastic sampling --- Games of chance (Mathematics) --- Mathematical models --- Numerical analysis --- Numerical calculations --- Biology --- Embryology --- Mendel's law --- Adaptation (Biology) --- Breeding --- Chromosomes --- Heredity --- Mutation (Biology) --- Variation (Biology) --- 575 General genetics. General cytogenetics. Immunogenetics. Evolution. Speciation. Phylogeny --- General genetics. General cytogenetics. Immunogenetics. Evolution. Speciation. Phylogeny --- 57.087.1 Biometry. Statistical study and treatment of biological data --- Biometry. Statistical study and treatment of biological data --- 519.226 Inference and decision theory. Likelihood. Bayesian theory. Fiducial probability --- Inference and decision theory. Likelihood. Bayesian theory. Fiducial probability --- Statistical methods --- Génétique quantitative --- Genetics -- Statistical methods. --- Monte Carlo Method --- Genetics, Medical --- Systems Analysis --- Basic Sciences. Genetics --- Population and Quantitative Genetics --- Population and Quantitative Genetics. --- Génétique --- Statistique bayésienne --- Life sciences. --- Biochemistry. --- Plant genetics. --- Animal genetics. --- Statistics. --- Life Sciences. --- Biochemistry, general. --- Statistics for Life Sciences, Medicine, Health Sciences. --- Animal Genetics and Genomics. --- Plant Genetics & Genomics. --- Bayesian statistical decision theory --- Monte Carlo method --- Biomathematics. Biometry. Biostatistics --- Mathematical statistics --- Monte Carlo method. --- Markov processes. --- Statistical methods. --- Quantitative genetics --- Monte-Carlo, Méthode de --- Markov, Processus de --- Méthodes statistiques --- EPUB-LIV-FT SPRINGER-B --- Plant Genetics and Genomics. --- Statistics . --- Plants --- Statistical analysis --- Statistical data --- Statistical science --- Mathematics --- Econometrics --- Biological chemistry --- Chemical composition of organisms --- Organisms --- Physiological chemistry --- Chemistry --- Medical sciences --- Composition --- Markov --- Méthode de Monte Carlo --- Inférence --- GENETICS --- STATISTICS --- MONTE CARLO METHOD --- MARKOV CHAINS --- STATISTICS AND NUMERICAL DATA
Listing 1 - 2 of 2 |
Sort by
|