Listing 1 - 10 of 21 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
For the 250th birthday of Joseph Fourier, born in 1768 in Auxerre, France, this MDPI Special Issue will explore modern topics related to Fourier Analysis and Heat Equation. Modern developments of Fourier analysis during the 20th century have explored generalizations of Fourier and Fourier–Plancherel formula for non-commutative harmonic analysis, applied to locally-compact, non-Abelian groups. In parallel, the theory of coherent states and wavelets has been generalized over Lie groups. One should add the developments, over the last 30 years, of the applications of harmonic analysis to the description of the fascinating world of aperiodic structures in condensed matter physics. The notions of model sets, introduced by Y. Meyer, and of almost periodic functions, have revealed themselves to be extremely fruitful in this domain of natural sciences. The name of Joseph Fourier is also inseparable from the study of the mathematics of heat. Modern research on heat equations explores the extension of the classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. In parallel, in geometric mechanics, Jean-Marie Souriau interpreted the temperature vector of Planck as a space-time vector, obtaining, in this way, a phenomenological model of continuous media, which presents some interesting properties. One last comment concerns the fundamental contributions of Fourier analysis to quantum physics: Quantum mechanics and quantum field theory. The content of this Special Issue will highlight papers exploring non-commutative Fourier harmonic analysis, spectral properties of aperiodic order, the hypoelliptic heat equation, and the relativistic heat equation in the context of Information Theory and Geometric Science of Information.
signal processing --- thermodynamics --- heat pulse experiments --- quantum mechanics --- variational formulation --- Wigner function --- nonholonomic constraints --- thermal expansion --- homogeneous spaces --- irreversible processes --- time-slicing --- affine group --- Fourier analysis --- non-equilibrium processes --- harmonic analysis on abstract space --- pseudo-temperature --- stochastic differential equations --- fourier transform --- Lie Groups --- higher order thermodynamics --- short-time propagators --- discrete thermodynamic systems --- metrics --- heat equation on manifolds and Lie Groups --- special functions --- poly-symplectic manifold --- non-Fourier heat conduction --- homogeneous manifold --- non-equivariant cohomology --- Souriau-Fisher metric --- Weyl quantization --- dynamical systems --- symplectization --- Weyl-Heisenberg group --- Guyer-Krumhansl equation --- rigged Hilbert spaces --- Lévy processes --- Born–Jordan quantization --- discrete multivariate sine transforms --- continuum thermodynamic systems --- interconnection --- rigid body motions --- covariant integral quantization --- cubature formulas --- Lie group machine learning --- nonequilibrium thermodynamics --- Van Vleck determinant --- Lie groups thermodynamics --- partial differential equations --- orthogonal polynomials
Choose an application
For the 250th birthday of Joseph Fourier, born in 1768 in Auxerre, France, this MDPI Special Issue will explore modern topics related to Fourier Analysis and Heat Equation. Modern developments of Fourier analysis during the 20th century have explored generalizations of Fourier and Fourier–Plancherel formula for non-commutative harmonic analysis, applied to locally-compact, non-Abelian groups. In parallel, the theory of coherent states and wavelets has been generalized over Lie groups. One should add the developments, over the last 30 years, of the applications of harmonic analysis to the description of the fascinating world of aperiodic structures in condensed matter physics. The notions of model sets, introduced by Y. Meyer, and of almost periodic functions, have revealed themselves to be extremely fruitful in this domain of natural sciences. The name of Joseph Fourier is also inseparable from the study of the mathematics of heat. Modern research on heat equations explores the extension of the classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. In parallel, in geometric mechanics, Jean-Marie Souriau interpreted the temperature vector of Planck as a space-time vector, obtaining, in this way, a phenomenological model of continuous media, which presents some interesting properties. One last comment concerns the fundamental contributions of Fourier analysis to quantum physics: Quantum mechanics and quantum field theory. The content of this Special Issue will highlight papers exploring non-commutative Fourier harmonic analysis, spectral properties of aperiodic order, the hypoelliptic heat equation, and the relativistic heat equation in the context of Information Theory and Geometric Science of Information.
signal processing --- thermodynamics --- heat pulse experiments --- quantum mechanics --- variational formulation --- Wigner function --- nonholonomic constraints --- thermal expansion --- homogeneous spaces --- irreversible processes --- time-slicing --- affine group --- Fourier analysis --- non-equilibrium processes --- harmonic analysis on abstract space --- pseudo-temperature --- stochastic differential equations --- fourier transform --- Lie Groups --- higher order thermodynamics --- short-time propagators --- discrete thermodynamic systems --- metrics --- heat equation on manifolds and Lie Groups --- special functions --- poly-symplectic manifold --- non-Fourier heat conduction --- homogeneous manifold --- non-equivariant cohomology --- Souriau-Fisher metric --- Weyl quantization --- dynamical systems --- symplectization --- Weyl-Heisenberg group --- Guyer-Krumhansl equation --- rigged Hilbert spaces --- Lévy processes --- Born–Jordan quantization --- discrete multivariate sine transforms --- continuum thermodynamic systems --- interconnection --- rigid body motions --- covariant integral quantization --- cubature formulas --- Lie group machine learning --- nonequilibrium thermodynamics --- Van Vleck determinant --- Lie groups thermodynamics --- partial differential equations --- orthogonal polynomials
Choose an application
For the 250th birthday of Joseph Fourier, born in 1768 in Auxerre, France, this MDPI Special Issue will explore modern topics related to Fourier Analysis and Heat Equation. Modern developments of Fourier analysis during the 20th century have explored generalizations of Fourier and Fourier–Plancherel formula for non-commutative harmonic analysis, applied to locally-compact, non-Abelian groups. In parallel, the theory of coherent states and wavelets has been generalized over Lie groups. One should add the developments, over the last 30 years, of the applications of harmonic analysis to the description of the fascinating world of aperiodic structures in condensed matter physics. The notions of model sets, introduced by Y. Meyer, and of almost periodic functions, have revealed themselves to be extremely fruitful in this domain of natural sciences. The name of Joseph Fourier is also inseparable from the study of the mathematics of heat. Modern research on heat equations explores the extension of the classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. In parallel, in geometric mechanics, Jean-Marie Souriau interpreted the temperature vector of Planck as a space-time vector, obtaining, in this way, a phenomenological model of continuous media, which presents some interesting properties. One last comment concerns the fundamental contributions of Fourier analysis to quantum physics: Quantum mechanics and quantum field theory. The content of this Special Issue will highlight papers exploring non-commutative Fourier harmonic analysis, spectral properties of aperiodic order, the hypoelliptic heat equation, and the relativistic heat equation in the context of Information Theory and Geometric Science of Information.
signal processing --- thermodynamics --- heat pulse experiments --- quantum mechanics --- variational formulation --- Wigner function --- nonholonomic constraints --- thermal expansion --- homogeneous spaces --- irreversible processes --- time-slicing --- affine group --- Fourier analysis --- non-equilibrium processes --- harmonic analysis on abstract space --- pseudo-temperature --- stochastic differential equations --- fourier transform --- Lie Groups --- higher order thermodynamics --- short-time propagators --- discrete thermodynamic systems --- metrics --- heat equation on manifolds and Lie Groups --- special functions --- poly-symplectic manifold --- non-Fourier heat conduction --- homogeneous manifold --- non-equivariant cohomology --- Souriau-Fisher metric --- Weyl quantization --- dynamical systems --- symplectization --- Weyl-Heisenberg group --- Guyer-Krumhansl equation --- rigged Hilbert spaces --- Lévy processes --- Born–Jordan quantization --- discrete multivariate sine transforms --- continuum thermodynamic systems --- interconnection --- rigid body motions --- covariant integral quantization --- cubature formulas --- Lie group machine learning --- nonequilibrium thermodynamics --- Van Vleck determinant --- Lie groups thermodynamics --- partial differential equations --- orthogonal polynomials
Choose an application
Aims to reinforce the interface between physical sciences, theoretical computer science, and discrete mathematics. This book assembles theoretical physicists and specialists of theoretical informatics and discrete mathematics in order to learn about developments in cryptography, algorithmics, and more.
Computer science --- Physics. --- Cryptography. --- Cryptanalysis --- Cryptology --- Secret writing --- Steganography --- Signs and symbols --- Symbolism --- Writing --- Ciphers --- Data encryption (Computer science) --- Natural philosophy --- Philosophy, Natural --- Physical sciences --- Dynamics --- Computer mathematics --- Electronic data processing --- Mathematics --- Mathematics.
Choose an application
Choose an application
Nitya kaaler utshab taba Bishyer-i-dipaalika Aami shudhu tar-i-mateer pradeep Jaalao tahaar shikhaa 1 - Tagore Should authors feel compelled to justify the writing of yet another book? In an overpopulated world, should parents feel compelled to justify bringing forth yet another child? Perhaps not! But an act of creation is also an act of love, and a love story can always be happily shared. In writing this book, it has been our feeling that, in all of the wealth of material on coherent states and wavelets, there exists a lack of a discern able, unifying mathematical perspective. The use of wavelets in research and technology has witnessed explosive growth in recent years, while the use of coherent states in numerous areas of theoretical and experimental physics has been an established trend for decades. Yet it is not at all un common to find practitioners in either one of the two disciplines who are hardly aware of one discipline's links to the other. Currently, many books are on the market that treat the subject of wavelets from a wide range of perspectives and with windows on one or several areas of a large spectrum IThine is an eternal celebration '" A cosmic Festival of Lights! '" Therein I am a mere flicker of a wicker lamp, , . 0 kindle its flame (my Master!), vi Preface of possible applications.
Coherent states. --- Wavelets (Mathematics) --- Coherent states --- Ondelettes --- 519.65 --- Wavelet analysis --- Harmonic analysis --- Coherence (Physics) --- Generalized coherent states --- States, Coherent --- Stochastic processes --- Approximation. Interpolation --- 519.65 Approximation. Interpolation --- Quantum physics. --- Topological groups. --- Lie groups. --- Quantum computers. --- Spintronics. --- Quantum Physics. --- Topological Groups, Lie Groups. --- Quantum Information Technology, Spintronics. --- Computers --- Groups, Lie --- Lie algebras --- Symmetric spaces --- Topological groups --- Groups, Topological --- Continuous groups --- Quantum dynamics --- Quantum mechanics --- Quantum physics --- Physics --- Mechanics --- Thermodynamics --- Fluxtronics --- Magnetoelectronics --- Spin electronics --- Spinelectronics --- Microelectronics --- Nanotechnology
Choose an application
This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter on coherent state quantization and the related probabilistic aspects. As a survey of the theory of coherent states, wavelets, and some of their generalizations, it emphasizes mathematical principles, subsuming the theories of both wavelets and coherent states into a single analytic structure. The approach allows the user to take a classical-like view of quantum states in physics. Starting from the standard theory of coherent states over Lie groups, the authors generalize the formalism by associating coherent states to group representations that are square integrable over a homogeneous space; a further step allows one to dispense with the group context altogether. In this context, wavelets can be generated from coherent states of the affine group of the real line, and higher-dimensional wavelets arise from coherent states of other groups. The unified background makes transparent an entire range of properties of wavelets and coherent states. Many concrete examples, such as coherent states from semisimple Lie groups, Gazeau-Klauder coherent states, coherent states for the relativity groups, and several kinds of wavelets, are discussed in detail. The book concludes with a palette of potential applications, from the quantum physically oriented, like the quantum-classical transition or the construction of adequate states in quantum information, to the most innovative techniques to be used in data processing. Intended as an introduction to current research for graduate students and others entering the field, the mathematical discussion is self-contained. With its extensive references to the research literature, the first edition of the book is already a proven compendium for physicists and mathematicians active in the field, and with full coverage of the latest theory and results the revised second edition is even more valuable.
Coherent states. --- Wavelets (Mathematics) --- Wavelet analysis --- Coherence (Physics) --- Generalized coherent states --- States, Coherent --- Physics. --- Group theory. --- Quantum physics. --- Quantum computers. --- Spintronics. --- Quantum Physics. --- Group Theory and Generalizations. --- Quantum Information Technology, Spintronics. --- Harmonic analysis --- Stochastic processes --- Quantum theory. --- Groups, Theory of --- Substitutions (Mathematics) --- Algebra --- Quantum dynamics --- Quantum mechanics --- Quantum physics --- Physics --- Mechanics --- Thermodynamics --- Magnetoelectronics --- Spin electronics --- Microelectronics --- Nanotechnology --- Computers --- Fluxtronics --- Spinelectronics --- Coherent states
Choose an application
This volume contains papers that have been selected after review for oral presentation at ISRM 2015, the Fourth IFToMM International Symposium on Robotics and Mechatronics held in Poitiers, France 23-24 June 2015. These papers provide a vision of the evolution of the disciplines of robotics and mechatronics, including but not limited to: mechanism design; modeling and simulation; kinematics and dynamics of multibody systems; control methods; navigation and motion planning; sensors and actuators; bio-robotics; micro/nano-robotics; complex robotic systems; walking machines, humanoids-parallel kinematic structures: analysis and synthesis; smart devices; new design; application and prototypes. The book can be used by researchers and engineers in the relevant areas of robotics and mechatronics.
Mechanical Engineering - General --- Mechanical Engineering --- Engineering & Applied Sciences --- Robotics --- Mechatronics --- Engineering design. --- Engineering. --- Mechatronics. --- Engineering Design. --- Nanotechnology and Microengineering. --- Construction --- Industrial arts --- Technology --- Design, Engineering --- Engineering --- Industrial design --- Strains and stresses --- Design --- Nanotechnology. --- Molecular technology --- Nanoscale technology --- High technology --- Mechanical engineering --- Microelectronics --- Microelectromechanical systems
Listing 1 - 10 of 21 | << page >> |
Sort by
|